Gallium Nitride 28V 130W, 3GHz RF Power Transistor

Description

The GTAH30130L4 is a 130W internally matched, GaN HEMT, designed for multiple applications, up to 3GHz

There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

In its typical wideband application, it can deliver 80W CW at 28V, and 100W at 30V across the full band of 0.5-3.0GHz.

• Typical **CW** performance (on 0.5-3.0GHz fixture with device soldered):

	Vds=28V, Idq=100mA					
Freq(GHz)	Pin(dBm)	Psat(dBm)	Psat(W)	lds(A)	Gain(dB)	Eff(%)
0.5	40.3	51.5	140.9	10.22	11.2	49.2
0.6	37.5	51.0	124.5	6.59	13.4	67.4
0.7	35.5	49.9	97.1	4.43	14.4	78.2
0.8	35.8	49.8	94.4	5.01	13.9	67.3
0.9	38.0	50.3	107.2	5.47	12.3	70.0
1.0	37.6	50.3	105.9	5.78	12.7	65.5
1.1	36.6	50.1	103.0	5.70	13.5	64.6
1.2	37.5	50.3	105.9	6.12	12.7	61.8
1.3	36.5	49.8	94.6	5.47	13.3	61.8
1.4	35.6	49.7	93.1	5.96	14.1	55.8
1.5	34.4	50.2	103.5	7.51	15.8	49.2
1.6	34.7	50.1	102.3	8.69	15.4	42.1
1.7	37.7	51.9	153.1	10.06	14.2	54.4
1.8	38.0	52.1	161.8	9.66	14.1	59.8
1.9	39.3	51.6	145.9	7.89	12.4	66.0
2.0	39.4	50.0	100.0	5.68	10.6	62.9
2.1	39.0	49.9	98.2	5.93	10.9	59.1
2.2	36.9	50.1	103.3	6.76	13.2	54.6
2.3	37.1	50.1	102.6	7.06	13.0	51.9
2.4	38.4	50.3	105.9	7.33	11.8	51.6
2.5	39.3	50.6	113.8	7.74	11.3	52.5
2.6	37.4	50.7	118.0	7.44	13.3	56.7
2.7	37.0	50.6	115.3	6.96	13.6	59.2
2.8	37.1	50.2	104.5	6.59	13.1	56.6
2.9	37.4	49.6	91.6	5.96	12.3	54.9
3.0	39.0	49.8	95.1	6.08	10.8	55.8

Recommended driver: G2MAH0133-12 (2 stage higher gain MCDA)

Document Number: GTAH30130L4 Product Datasheet V2.0

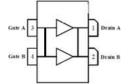
Applications and Features

- Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc.
- High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically –5 V
- 2. Turn on VDS to nominal supply voltage (28V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level


- High Reliability Metallization Process
- · Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances
 (RoHS) Directive 2002/95/EC

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Figure 1: Pin Connection definition

Transparent top view (Backside grounding for source)

*Notice: Both leads at input and output are internally connected, device is only usable as single ended Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	150	Vdc
GateSource Voltage	V _{GS}	-10,+2	Vdc
Operating Voltage	V _{DD}	36	Vdc
Maximum Forward Gate Current @ Tc = 25°C	Igmax	28.8	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature(See note 1)	TJ	+225	°C
Total Device Power Dissipation (Derated above 25°C, see note 2)	Pdiss	120	W

Note: 1. Continuous operation at maximum junction temperature will affect MTTF

2.Bias Conditions should also satisfy the following expression: Pdiss < (Tj - Tc) / RJC and Tc = Tcase

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc	1.2	c/w
Tc= 85°C, RF CW operation, Pout=80W, 3GHz	Keju	1.2	C/ VV

Table 3. Electrical Characteristics (Tc = $25^{\circ}C$ unless otherwise noted)

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	V _{GS} =-8V; I _{DS} =28.8mA	V _{DSS}	150			V
Gate Threshold Voltage	V _{DS} = 28V, I _D =28.8mA	V _{GS} (th)	-4		-2	V
Gate Quiescent Voltage	V _{DS} =28V, I _{DS} =200mA, Measured in Functional Test	V _{GS(Q)}		-2.6		V

Document Number: GTAH30130L4 Product Datasheet V2.0

Typical performance

0.5-3.0GHz

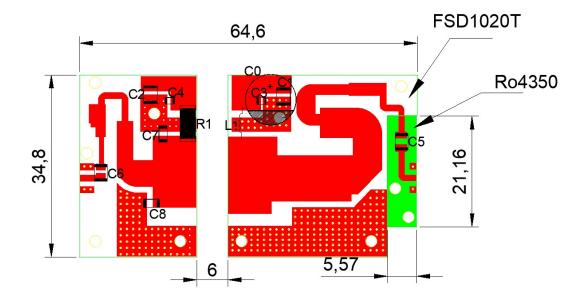
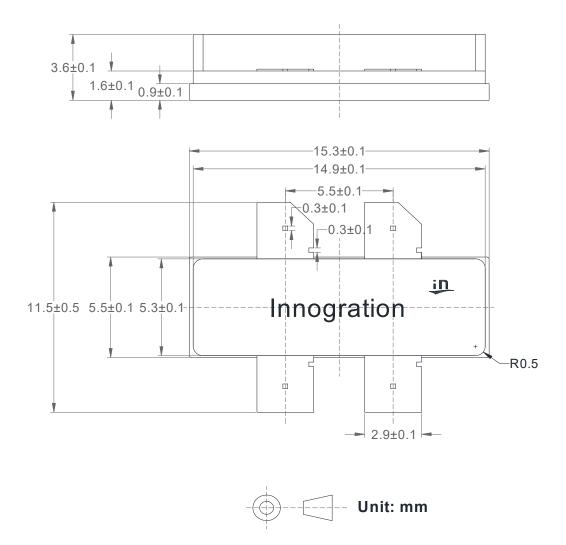




Figure 3: Picture and Bill of materials of 0.5-3GHz wide band application circuit (Layout Gerber file upon request)

Component	Description	Suggestion	
C0	470uF/63V		
C1,C2	10uF	1210	
С3	100pF	MQ300805	
C4	56pF	MQ300805	
C5,C6	27pF	MQ101111	
C7,C8	1pF	MQ301111	
R1	Chip Resistor ,100Ω	2512	
L1	d=1.5mm, 2 turns,D=4.8mm		
РСВ	FSD1020T , Dk=10.2 , 20mil / Rogers 4350 20mil		

Earless Flanged Ceramic Package; 4 leads

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2023/8/11	V1.0	Production Datasheet Creation
2023/11/4	V2.0	Update per latest application work
2023/12/26	V2.1	Update per latest application work

Application data based on TC-23-70/RXT-23-50

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.