Document Number: ITGV10130C9 Preliminary Datasheet V1.1

130W,50V Plastic RF LDMOS Transistor

Description

The ITGV10130C9 is a dual path 130-watt, highly rugged, LDMOS transistor, designed for any general applications at frequencies up to 1GHz, in 12*10mm QFN plastic package, supporting surface mounted on PCB through high density grounding vias.

It can be configured as Doherty to be as high efficiency and low cost driver for 4G/5G application within 0.6-1GHz.

ITGV10130C9

Typical Doherty RF Performance (On Innogration fixture with device soldered).

Vds= 50V, Idq=100mA(Vm=3.3V, Vp=1.6V)

Freq (MHz)	Pout (dBm)	CCDF (dB)	Ppeak (dBm)	Ppeak (W)	ACPR (dBc)	Gain (dB)	Eff (%)
869	42.50	8.44	50.93	123.9	-27.4	18.8	51.3
881.5	42.50	8.83	51.33	135.9	-28.9	18.4	52.7
894	42.50	8.98	51.48	140.5	-30.8	17.9	52.4

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Suitable Applications

- P band power amplifier
- All 4G/5G cellular application within 0.6 to 1GHz

Table 1. Maximum Ratings

-			
Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+110	Vdc
GateSource Voltage	V _{GS}	-10 to +10	Vdc
Operating Voltage	V_{DD}	+55	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	T₃	+225	°C

Table 2. Thermal Characteristics

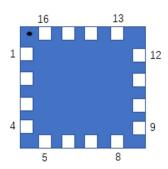
Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	RеJC	0.7	00/11/
T _C = 85°C, T _J =200°C, DC test		0.7	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class		
Human Body Model (per JESD22A114)	Class 2		

Document Number: ITGV10130C9 Preliminary Datasheet V1.1

Table 4. Electrical Characteristics (TA = 25 °C unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics					
Drain-Source Voltage	$V_{\text{(BR)DSS}}$		110		V
V _{GS} =0, I _{DS} =100uA					V
Zero Gate Voltage Drain Leakage Current				1	μА
$(V_{DS} = 90V, V_{GS} = 0 V)$	DSS			'	μΑ
GateSource Leakage Current	I _{GSS}			1	μА
$(V_{GS} = 11 \text{ V}, V_{DS} = 0 \text{ V})$					
Gate Threshold Voltage	V _{GS} (th)		2		V
$(V_{DS} = 50V, I_D = 600 \mu A)$	V GS(III)		2		V
Gate Quiescent Voltage	$V_{\text{GS}(Q)}$		3.3		V
$(V_{DD} = 50V, I_D = 100mA, Measured in Functional Test)$					V

 $\textbf{Load Mismatch (In Innogration Test Fixture, 50 ohm system):} \quad V_{DD} = 50 \text{Vdc}, \ I_{DQ} = 100 \text{mA}, \ f = 880 \ \text{MHz}$

VSWR 10:1 at 130W pulse CW Output Power	No Device Degradation
---	-----------------------

Figure 1: Pin Connection definition

Transparent top view (Backside grounding for source)

Pin No.	Symbol	Description
1,2	RF IN/Vgs of Main	RF Input/Gate bias of main path
3,4	RF IN/Vgs of Peak	RF Input/Gate bias of peak path
9,10	RF OUT/Vds of Peak	RF Output/Drain bias of peak path
11,12	RF OUT/Vds of Main	RF Output/Drain bias of main path
Other Pins	GND	Grounding
		DC/RF Ground. Proposed to be soldered to heatsink plane directly for the best CW thermal
Package Base	GND	and RF performance. Soldered through vias or copper coin allowed for pulsed CW and back
		off applications, but will result in higher junction temperatures

869-894MHz application board

Reference Circuit of Test Fixture Assembly Diagram 20mils RO4350B

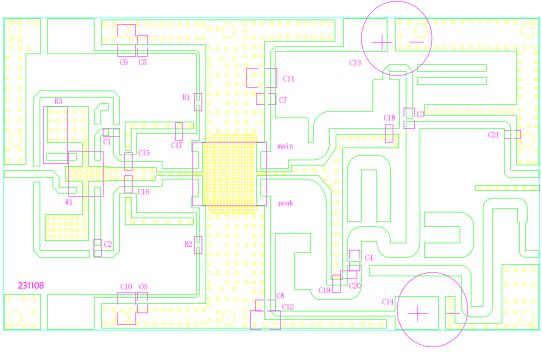


Figure 2. Test Circuit Component Layout

Table 5. Test Circuit Component Designations and Values

Designator	Footprint	Comment	Quantity
C1, C2, C19	0603	6.8 pF	3
C3, C4, C5, C6, C7, C8	0603/0805	47 pF	6
C9, C10, C11, C12	1210	10uF/100V	4
C13, C14		220uF/63V	2
C15, C16	0603	8.2 pF	2
C17	0603	2.4 pF	1
C18, C20	0603	3.0 pF	
R1,R2	0603	10Ω	2
R3	2512	51Ω	1
W1		DC07F02 (YANTEL 2dB)	1

TYPICAL CHARACTERISTICS

Figure 5. Power Gain and Drain Efficiency as function of Power Output at Idq=100mA

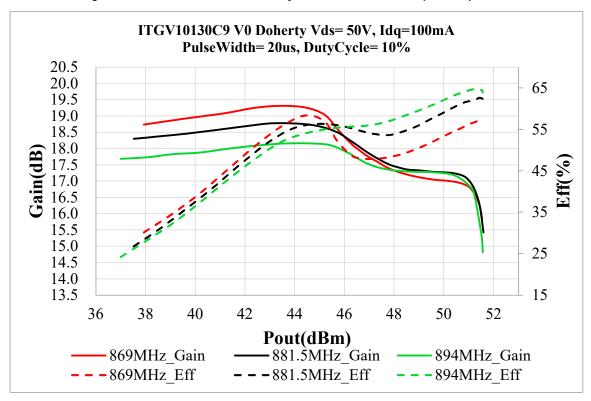
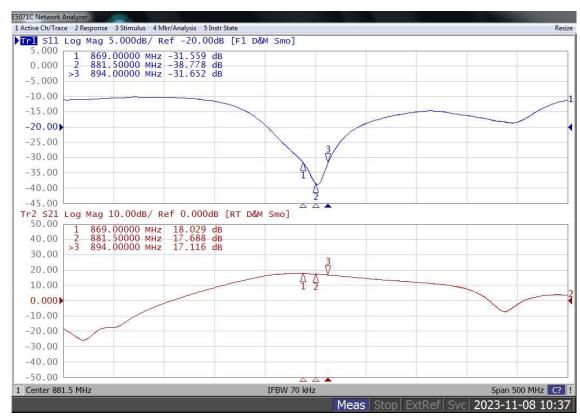
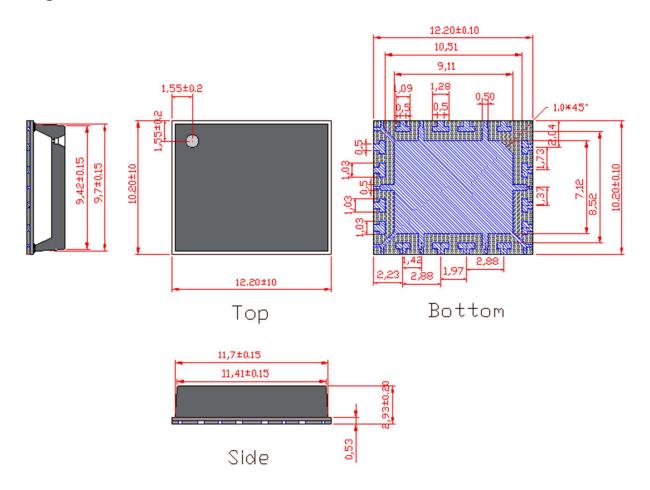




Figure 5.Network analyzer output S11/S21

Package Dimensions (Unit:mm)

Revision history

Table 7. Document revision history

Date	Revision	Datasheet Status	
2023/11/8	Rev 1.0	Preliminary Datasheet	
2024/1/4	Rev 1.1	Modify the typo of pin definition on page 2	

Application data based on LSM-23-35

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.