Document Number: SME2013V Preliminary Datasheet V1.0

Gallium Nitride 50V 130W, RF Power Transistor

Description

The SME2013V is a 130-watt, unmatched GaN HEMT, designed for multiple applications with frequencies up to 2000MHz.

The performance is guaranteed for applications operating in the mentioned frequencies.

There is no guarantee of performance when this part is used in applications designed outside of these frequencies.

•Typical Pulsed CW RF performance (on fixture with device soldered):

	Vds= 50V, Idq=150mA, Vgs =-3.15V						
Freq (MHz)	P1dB(dBm)	P1dB(W)	P1dB Eff(%)	P1dB Gain(dB)	P3dB(dBm)	P3dB(W)	P3dB Eff(%)
960	50.84	121.4	61.2	18.31	51.67	147.0	67.2
1080	51.21	132.1	61.0	19.7	52.37	172.7	67.2
1215	50.47	111.6	65.3	20.07	51.83	152.3	72.5

CW data upon request

Applications and Features

- Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc.
- High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package
- · High Reliability Metallization Process
- · Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically –5 V
- 2. Turn on VDS to nominal supply voltage (50V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V _{GS}	-8 to 0	Vdc
Operating Voltage	V _{DD}	0 to 55	Vdc
Maximum forward gate current	Igf	16.8	mA
Storage Temperature Range	Tstg	-65 to +150	С
Case Operating Temperature	T _C	-55 to +150	С
Operating Junction Temperature	TJ	+225	С

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	R⊕JC	2.1	C/W
T _C = 25°C, Pout=130W Pulsed CW, FEA	K⊕JC	2.1	C/W

Document Number: SME2013V Preliminary Datasheet V1.0

Table 3. Electrical Characteristics (T_C = 25 °C unless otherwise noted)

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	V _{GS} =-8V; I _{DS} =16.8mA	V _{DSS}		200		V
Gate Threshold Voltage	V _{DS} = 10V, I _D = 16.8 mA	V _{GS} (th)		-3.4		V
Gate Quiescent Voltage V _{DS} =50V, I _{DS} =150mA, Measured in Functional Test		V _{GS(Q)}		-3.1		V

Functional Tests (In Innogration broadband Test Fixture, 50 ohm system): $V_{DD} = 50 \text{ Vdc}$, $I_{DQ} = 150 \text{ mA}$, f = 1000 MHz, Pulsed CW

Characteristic	Symbol	Min	Тур	Max	Unit
Power Gain	Gp		17		dB
Drain Efficiency@P3dBt	Eff		65		%
3dB Compressed point	P3dB		130		W
Mismatch stress at all phases(No device damage)	VSWR		10:1		Ψ

Reference Circuit of Test Fixture Assembly Diagram

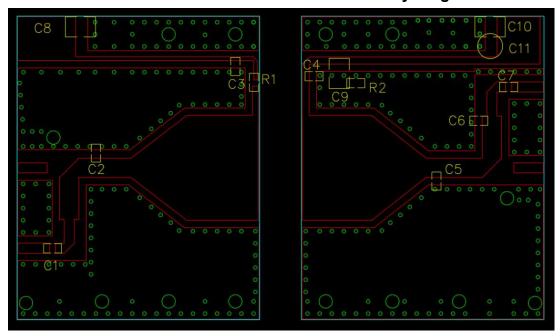


Figure 2. Test Circuit Component Layout (960-1215M)

Table 4. Test Circuit Component Designations and Values

Component	Value	Quantity
U1	SME2013V	1
C1、C3、C4、C7	20pF	4
C8、C9、C10	10uF/63V	3
R1、R2	10 Ω	2
C11	470uF/63V	1
C2	3pF	1
C5	3.6pF	1
C6	1.8pF	1

SME2013V GaN TRANSISTOR

Figure 3. Pulse RF performance

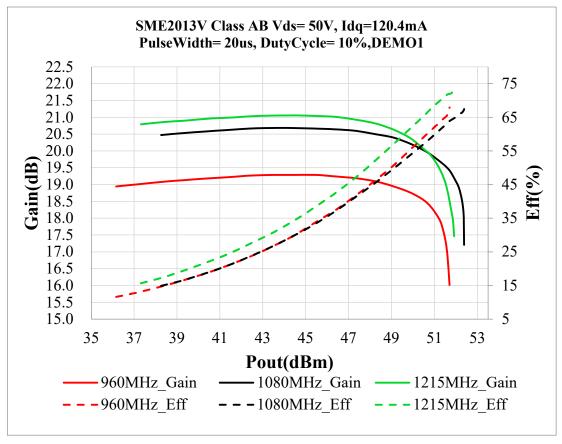
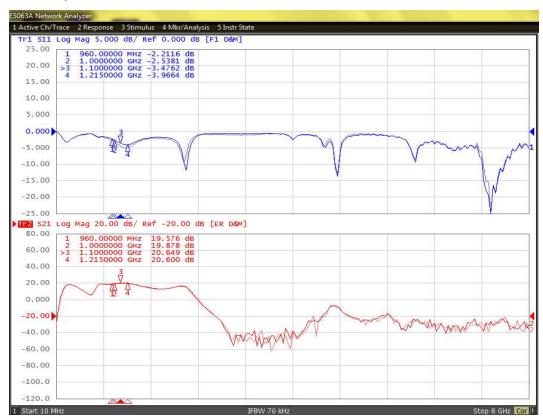



Figure 4. Network Analyzer result S11 and S21

SME2013V GaN TRANSISTOR

Package Outline

Flanged ceramic package; 2 leads

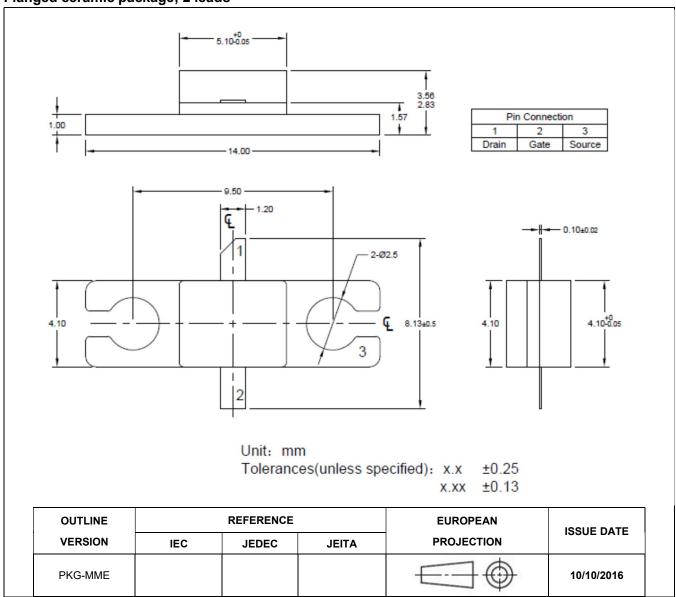


Figure 1. Package Outline PKG-MME

SME2013V GaN TRANSISTOR

Document Number: SME2013V Preliminary Datasheet V1.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2023/1/18	V1.0	Preliminary Datasheet Creation

Application data based on ZYX-23-01

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.