Document Number: GTAH35120C6 Preliminary Datasheet V1.0

GaN HEMT 28V, 120W, 2.7-3.5GHz Power Transistor Description

The GTAH35120C6 is a 120W, internal matched GaN HEMT, operated from 2.7-3.5GHz.

It features high gain, high efficiency, wide band and low cost, in 10*6mm open cavity plastic package.

As QMT(Quasi-MMIC-Transistor), with innovative internal and external matching design, it is highly compact ,similar to MMIC size while with better performance and cost structure

There is no guarantee of performance when this part is used outside of stated frequencies.

• Typical Class AB RF Performance with device soldered

Vds= 28V, Vgs=-2.40V,Idq=200mA					
Pulse width(20us) Duty cycle(20%)					
Freq(MHz)	P-1(dBm)	P-1Gain(dB)	P-3(dBm)	P-3(W)	EFF (%)
2500	50.41	15.1	51.54	142.7	63.3
2700	50.04	15.1	51.28	134.4	61.7
3100	50.07	15.5	51.32	135.5	62.3
3300	50.05	15.6	51.49	140.9	61.4
3500	49.73	15.3	51.28	134.3	58.7

Applications

• S band pulsed power amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- i urning the a
- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

- Turning the device OFF
- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Figure 1: Pin Connection definition

Transparent top view (Backside grounding for source)

2	- 0/36
8	35
9	34
10	33
11	32
12	31
13]	30
14	29
15	28
16	27
17	26
18/	25

Pin No.	Symbol	Description
8,9,10,11,14,15,16,17	RF IN/Vgs	RF Input, Vgs bias
26,27,28,29,32,33,34,35	RF OUT/VDD	RFOutput, Drain bias

GTAH35120C6

Document Number: GTAH35120C6 Preliminary Datasheet V1.0

Rest Pins and Package Base	GND	CW application.	CW application.		
Table 1. Maximum Ratings					
Rating		Symbol	Value	Unit	
DrainSource Voltage		V _{DSS}	+150	Vdc	
GateSource Voltage		V _{GS}	-8 to +0.5	Vdc	
Operating Voltage		V _{DD} 36		Vdc	
Maximum gate current		lgs	27.2	mA	
Storage Temperature Range		Tstg	-65 to +150	°C	
Case Operating Temperature		Tc	+150	°C	
Operating Junction Temperature		TJ	+225	°C	
Table 2. Thermal Characteristics					
Characteristic		Symbol	Value	Unit	

Thermal Resistance, Junction to Case by FEA	Roic	0.6	°C ///
T_{C} = 85°C, at Pout=120W Pulsed CW	I (6)C	0.0	0/11

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics (main path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=27.2mA	V _{DSS}		200		V
Gate Threshold Voltage VDS =10V, ID = 27.2mA		V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage VDS =28V, IDS=200mA, Measured in Functional Test		$V_{GS(Q)}$		-2.4		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	3.5GHz, Pout=120W Pulsed CW					
	All phase,	VSWR		10:1		
	No device damages					

Figure 2: Median Lifetime vs. Channel Temperature

Typical performance

Figure 3: Efficiency and power gain as function of Pout

Figure 4: Network analyzer output, S11 and S21

Figure 5: Picture of application board

Table 4. Bill of materials of application board (PCB layout upon request, RO4350B 20mils)

Component	Value	Description	
PCB	thickness,20mil	Rogers 4350	
U1	GTAH2537-120H	PA	
C1、C4、C5、C7	8.2pF	ATC600S	
C3、C8	10uF	TDK1206	
C2	1.5pF	ATC600S	
C6	0.7pF	ATC600S	
R1	10 Ω	TDK0805	

Document Number: GTAH35120C6 Preliminary Datasheet V1.0

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2023/11/4	V1.0	Preliminary Datasheet Creation

Application data based on: HJ-23-19

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.