Document Number: ITEH20080C9 Preliminary Datasheet V1.0

80W,28V Plastic RF LDMOS Transistor

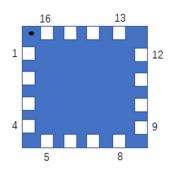
Description

The ITEH20080C9 is an 80-watt, high performance, LDMOS transistor, designed for any general applications at frequencies from 1.8 to 2.0GHz, in 12*10mm QFN plastic package, It can be soldered on PCB through high density grounding vias for pulse or back off linear application .

Typical 1.8-1.9GHz Class AB RF Performance (On Innogration fixture with device soldered).

V _{DS} = 28V, Vgs=2.65V(Idq=600mA),				
P _{out} =39.0dBm, WCDMA 1 Carrier				
Freq (MHz) P3dB(W) ACPR (dBc) Gain(dB) EFF (%)				
1800	100	-46.5	18	18.5
1900	99	-46	17	18.5

ITEH20080C9


Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- · Pb-free, RoHS-compliant

Suitable Applications

- L band power amplifier
- All 4G/5G cellular application within 1.8 to 2.0GHz

Pin Configuration and Description (Top view)

Pin No.	Symbol	Description
5-8	RF IN/Vgs	RF Input/Gate bias
13-16	RF OUT/Vds	RF Output/Drain bias
Others	NC	Can be left as either no use or grounding
		DC/RF Ground. Proposed to be soldered to heatsink plane directly for the best CW thermal
Package Base	GND	and RF performance. Soldered through vias or copper coin allowed for pulsed CW
		applications, but will result in excessive junction temperatures and different RF performance

Document Number: ITEH20080C9 Preliminary Datasheet V1.0

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+65	Vdc
GateSource Voltage	$V_{\sf GS}$	-10 to +10	Vdc
Operating Voltage	V_{DD}	+28	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	T,	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Do 10	0.0	°C/W
T _C = 85°C, DC test, device soldered on heatsink directly	R⊕JC	0.9	-C/VV

Table 3. ESD Protection Characteristics

Test Methodology	Class	
Human Body Model (per JESD22A114)	Class 2	

Table 4. Electrical Characteristics (TA = 25 $^{\circ}$ C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics					
Drain-Source Voltage	V _{(BR)DSS}		65	70	V
V _{GS} =0, I _{DS} =100uA	V (BR)DSS		03	70	V
Zero Gate Voltage Drain Leakage Current				1	^
$(V_{DS} = 28V, V_{GS} = 0 V)$	I _{DSS}			l	μΑ
GateSource Leakage Current	I _{GSS}			1	μΑ
(V _{GS} = 11 V, V _{DS} = 0 V)	IGSS			ı ————————————————————————————————————	μΛ
Gate Threshold Voltage	V _{GS} (th)		2		V
$(V_{DS} = 28V, I_D = 600 \mu A)$	V GS(U1)		2		V
Gate Quiescent Voltage	$V_{GS(Q)}$		2.6		V
(V _{DD} = 28V, I _D = 600mA, Measured in Functional Test)	▼ GS(Q)		2.0		V

Load Mismatch (In Innogration Test Fixture, 50 ohm system): $V_{DD} = 28 Vdc$, $I_{DQ} = 600$ mA, f = 2000 MHz

VSWR 10:1 at 80W pulse CW Output Power	No Device Degradation
1 VSVVIX TO. I at 60VV pulse CVV Output Fower	No Device Degradation

1800-1900MHz application board

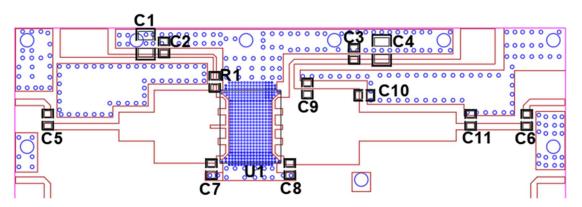


Figure 2. Test Circuit Component Layout, 20mils RO4350B

Table 5. Test Circuit Component Designations and Values

Component	Value	Description
PCB	Thickness,20mil	Rogers 4350
U1	ITEH20080C9	PA
C1、C4	10uF	TDK1206
C2、C3、C5、C6	12pF	ATC600S
C7	2.0pF	ATC600S
C8	3.3pF	ATC600S
C9	2.4pF	ATC600S
C10	1.0pF	ATC600S
C11	1.6pF	ATC600S
R1	10 Ω	TDK0805

TYPICAL CHARACTERISTICS

Figure 3. Power Gain and Drain Efficiency as function of Power Output

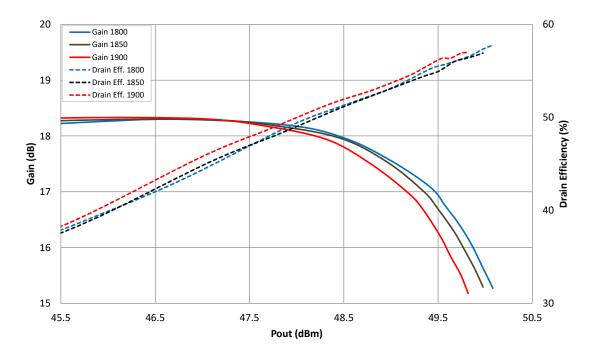
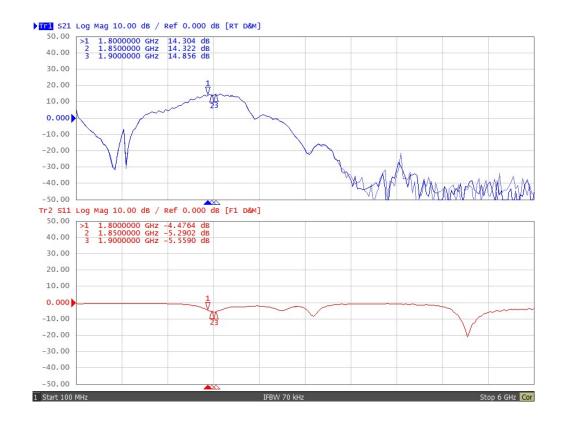
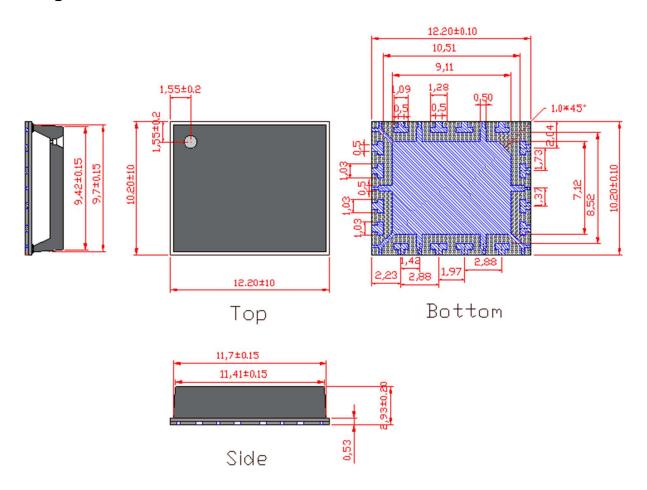




Figure 4. Network analyzer output S11/S21

Package Dimensions

Revision history

Table 7. Document revision history

Date	Revision	Datasheet Status
2023/12/28	Rev 1.0	Preliminary Datasheet

Application data based on HJ-23-22

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.