
Innogration (Suzhou) Co., Ltd.

3.0-5.0GHz, 10W, 28V High Gain GaN Fully matched PA Module

Description

The G2MAH3050-10C9 is a 10-watt **,2 stage/high gain** integrated Power Amplifier Module, designed for broad band applications, with frequencies from 3 to 5GHz. The module is 50 Ω input/output matched and requires minimal external components. It can work at higher voltage like 32V with increased power capability

The module implements wideband power amplifier in form of multi chips, housed in cost effective plastic open cavity package, offers a much lower cost than traditional MMIC solutions.

Product Features

• Operating Frequency Range: 3-5GHz

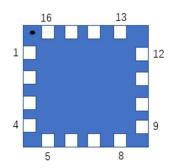
• Operating Drain Voltage: +28 V

• 50 Ω Input/Output

• Psat≥40 dBm

• Small signal gain:>25dB, Power gain:>22dB

• Minimum efficiency:>40%


• 12x10 mm Surface Mount Package

• Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Applications

- Ultra Broadband Amplifiers
- Fiber Drivers
- Test Instrumentation
- EMC Amplifier Drivers
- 2-way Radios

Pin Configuration and Description (Top view)

Pin No.	Symbol	Description
1	RF IN	RF Input
9	RF OUT	RF Output
16	Vgs1	Gate bias for 1 st stage
15	Vdd1	Drain bias for 1 st stage
6	Vgs2	Gate bias for 2nd stage
7	Vdd2	Drain bias for 2nd stage
Others	NC	No connection
		DC/RF Ground. Proposed to be soldered to heatsink plane directly for the best CW thermal
Package Base	GND	and RF performance. Soldered through high density vias or copper coin also allowed ,but
		will result in excessive junction temperatures and different RF performance

Table 1. Maximum Ratings

Symbol	Value	Unit
$V_{\scriptscriptstyle DSS}$	150	Vdc
$V_{\sf GS}$	-10 to +2	Vdc
V_{DD}	+36	Vdc
Tstg	-65 to +150	°C
Tc	+150	°C
T,	+225	°C
	V _{DSS} V _{GS} V _{DD} Tstg Tc	V _{DSS} 150 V _{SS} -10 to +2 V _{DD} +36 Tstg -65 to +150 T _C +150

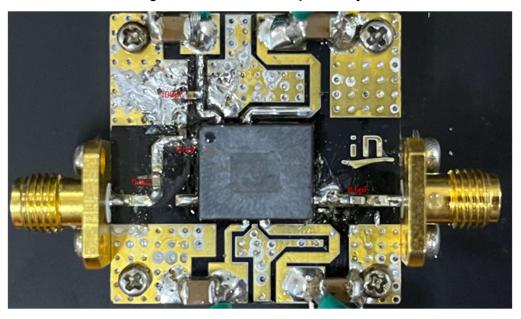
Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc	6	0000
T _C = 85°C, T _J =175°C, DC test	RejC	6	°C/W

Table 3. Electrical Characteristics

Parameter	Condition	Min	Тур	Max	Unit
Frequency Range		3000		5000	MHz
Power Gain @ Psat		23			dB
P _{SAT}	Pulse		40		dBm
Drain Efficiency @ P _{SAT}		40			%
Unless otherwise noted: TA = 25°C, Vpp =28 V, Pulse Width=50 us. Duty cycle=20%					

Load Mismatch of per Section (On Test Fixture, 50 ohm system): V_{DD} =28 V, I_{DQ} =25 mA, f = 3.5 GHz


VSWR 10:1 at Psat pulse CW Output Power	No Device Degradation
---	-----------------------

Innogration (Suzhou) Co., Ltd.


Reference Circuit of Test Fixture Assembly Diagram

Figure 1. Test Circuit Component Layout

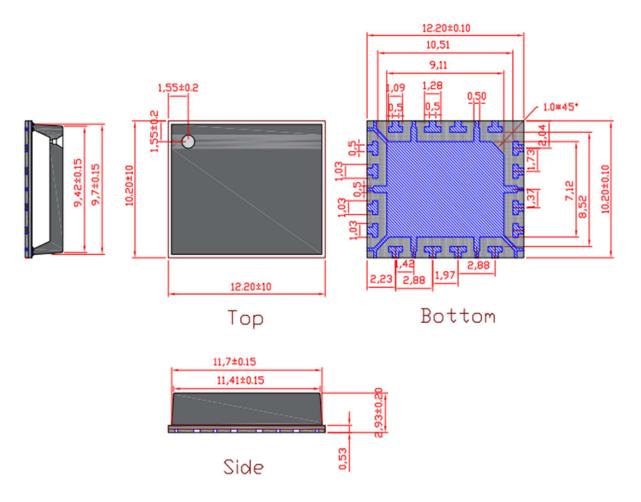

TYPICAL CHARACTERISTICS

Figure 2. Network analyzer output S11/S21 (Pin=0dBm)

Innogration (Suzhou) Co., Ltd.

Package Dimensions (Unit:mm)

Revision history

Table 6. Document revision history

Date	Revision	Datasheet Status
2023/2/14	Rev 1.0	Preliminary Datasheet
2023/7/2	Rev 1.1	Modify the gain flatness

Application data based on HJ-23-02

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.