Document Number: SME4008V Preliminary Datasheet V1.0

Gallium Nitride 50V 80W, RF Power Transistor

Description

The SME4008V is a 80-watt, unmatched GaN HEMT, designed for multiple applications with frequencies up to 4000MHz.

The performance is guaranteed for applications operating in the mentioned frequencies. There is no guarantee of performance when this part is used in applications designed outside of these frequencies.

Typical performance (on Innogration fixture with device soldered)

V_{DD}=50V, I_{DQ}=100mA, CW,

Frequency(MHz)	Gp (dB)	P _{3dB} (W)	Efficiency (%)
2000	15	80	65

•Typical performance (on fixture with device soldered): V_{DD}=50V I_{DQ}=100mA, Pulse CW, Pulse Width=20 us, Duty cycle=10% ..

Fraguanay			Pulse CW			WCDMA Signal ⁽¹⁾ : P _{AVG} =42dB		
Frequency (MHz)	Gp@ P _{1dB}	P _{1dB}	η _D	P _{3dB}	ηD	Gp	ηD	ACPR _{5MHz}
(1411 12)	(dB)	(dBm)	(%)	(dBm)	(%)	(dB)	(%)	(dBc)
3400	11.4	49.6	58.4	50.3	61.3	12.0	28.7	-38.5
3500	12.3	49.1	59.1	50.1	62.9	12.6	30.5	-36.5
3600	12.3	47.6	57.5	49.1	63.5	12.1	34.6	-33.0

Note:(1) WCDMA signal: 3GPP test model 1; 1 to 64 DPCH; Channel Bandwidth=3.84MHz,PAR =10.5 dB at 0.01 % probability on CCDF.

Applications and Features

- Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc.
- High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package
- · High Reliability Metallization Process
- Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage (50V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically –5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V _{GS}	-8 to 0	Vdc
Operating Voltage	V_{DD}	0 to 55	Vdc
Maximum forward gate current	Igf	10	mA
Storage Temperature Range	Tstg	-65 to +150	С
Case Operating Temperature	T _C	-55 to +150	С

SME4008V GaN TRANSISTOR

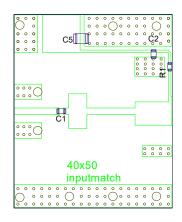
Document Number: SME4008V Preliminary Datasheet V1.0

Operating Junction Temperature	т	1225	C
Operating Junction Temperature	IJ	+225	C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc	2.2	C/W
T _C = 85°C, T _J =200°C, DC Power Dissipation, FEA	KAJC	3.2	C/ VV

Table 3. Electrical Characteristics ($T_C = 25^{\circ}C$ unless otherwise noted)


DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage V _{GS} =-8V; I _{DS} =10mA		V_{DSS}		200		V
Gate Threshold Voltage V _{DS} = 10V, I _D = 10mA		V _{GS} (th)		-3.4		V
Gate Quiescent Voltage V _{DS} =50V, I _{DS} =100mA, Measured in Functional Test		$V_{GS(Q)}$		-3.12		V

Functional Tests (In Innogration broadband Test Fixture, 50 ohm system): V_{DD} = 50 Vdc, I_{DQ} = 100 mA, f = 2000 MHz, CW

Characteristic	Symbol	Min	Тур	Max	Unit
Power Gain @ P3dB	Gp		15		dB
Drain Efficiency@P3dBt	Eff		65		%
3 Compressed point	P3dB	80			W
Input Return Loss	IRL		-7		dB
Mismatch stress at all phases(No device damage)	VSWR		10:1		Ψ

Reference Circuit of Test Fixture Assembly Diagram

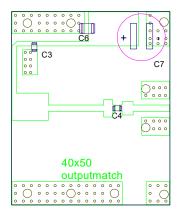


Figure 1. Test Circuit Component Layout (3400MHz~3600MHz)

Table 4. Test Circuit Component Designations and Values

Designator	Value	Package
C1, C2, C3, C4	6.8pF	0805
C5, C6	10uF	1210
R1	10 Ω	0603
C7	100uF/63V	
PCB	0.762mm [0.030"] tl	nick, er=3.48,
PCD	Rogers RO4350B, 1 oz	. copper

Figure 2. Pulse RF performance (3400MHz~3600MHz)

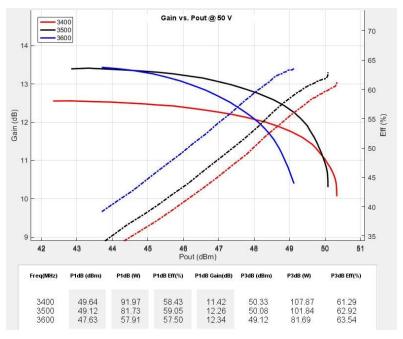
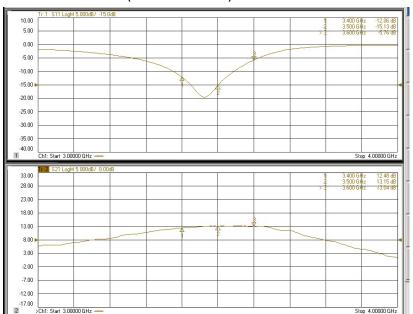



Figure 3. Network Analyzer result S11 and S21 (3400MHz~3600MHz)

SME4008V GaN TRANSISTOR

Package Outline

Flanged ceramic package; 2 leads

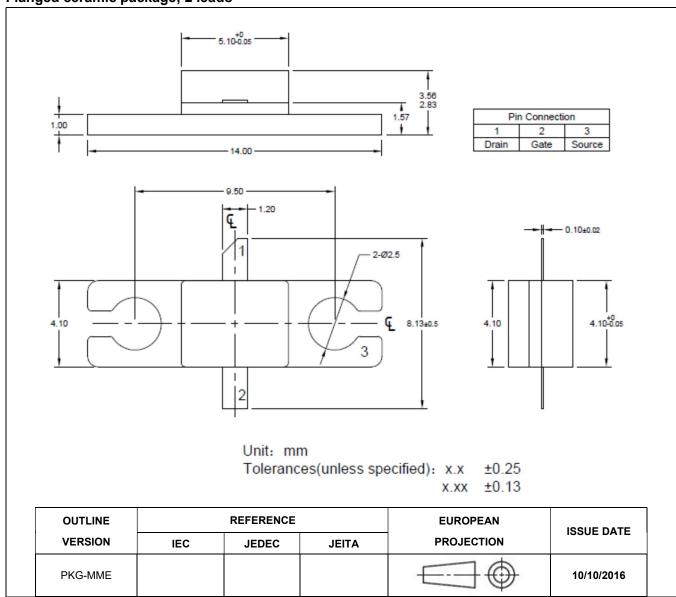


Figure 1. Package Outline PKG-MME

SME4008V GaN TRANSISTOR

Document Number: SME4008V Preliminary Datasheet V1.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2023/3/22 V1.0		Preliminary Datasheet Creation from NME4008V

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.