Document Number: STCV20700BY4V

Gallium Nitride 50V, 700W,1.8-2.0GHz RF Power Transistor

Description

The STCV20700BY4V is a 700-watt, internally matched GaN HEMT, designed for 5G cellular applications with frequencies from 1.8-2.0GHz, enabled by wide band VBW capability to support IBW up to 200MHz..

It can be configured as asymmetrical Doherty for 4G or 5G application, delivering 100 to 115W average power, according to normal 8 to 8.5dB back off.

There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

Typical 1805-1880MHz Doherty Pulsed CW and 1C W--CDMA Characterization Performance:

VDD = 50 Vdc, IDQA = 150mA, VGSB = -5.5 Vdc,

1C WCDMA; Signal PAR = 10 dB @ 0.01% Probability on CCDF.

Freq	Pout	CCDF	Ppeak	Ppeak	ACPR	Gain	Eff
(MHz)	(dBm)	(dB)	(dBm)	(W)	(dBc)	(dB)	(%)
1805	50.5	8.40	58.90	776.8	-28.2	13.9	58.0
1842.5	50.5	8.55	59.05	804.0	-29.0	13.6	57.7
1880	50.5	8.67	59.15	822.4	-28.0	14.1	56.7

Typical 1930-2000MHz Doherty Pulsed CW and 1C W--CDMA Characterization Performance:

VDD = 55 Vdc, IDQA = 160mA, VGSB = -5.7Vdc,

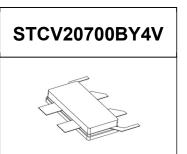
1C WCDMA; Signal PAR = 10 dB @ 0.01% Probability on CCDF.

Freq	Pout	CCDF	Ppeak	Ppeak	ACPR	Gain	Eff
(MHz)	(dBm)	(dB)	(dBm)	(W)	(dBc)	(dB)	(%)
1930	50.5	8.88	59.39	868.7	-32.2	15.9	54.8
1965	50.5	9.18	59.66	925.2	-31.7	16.3	54.2
2000	50.5	9.13	59.61	913.9	-29.2	15.7	54.0

Recommended driver: Doherty (1 stage discrete solution): STBV27070C6

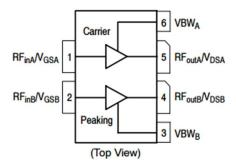
Applications

- Asymmetrical Doherty amplifier within N3 5G band and B3 4G band
- · L band power amplifier


Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch—off (VP) voltage, typically –5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level


Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Document Number: STCV20700BY4V Preliminary Datasheet V2.1

Figure 1: Pin Connection definition

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain—Source Voltage	V _{DSS}	+200	Vdc
Gate—Source Voltage	V _{GS}	-8 to +0.5	Vdc
Operating Voltage	V_{DD}	55	Vdc
Maximum gate current	Igs	92	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _C	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Do 10	0.0	°C /W
T _C = 85°C, Pout=100W, 1.84GHz Doherty application board	Rejc	0.9	-0 /00

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics (main path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage VGS=-8V; IDS=36mA		V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 36mA	V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage VDS =50V, IDS=140mA, Measured in Functional Te		$V_{GS(Q)}$		-3.08		V

DC Characteristics (peak path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage VGS=-8V; IDS=56mA		V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 56mA	$V_{GS(th)}$	-4		-2	V
Gate Quiescent Voltage	VDS =50V, IDS=250mA Measured in Functional Test	$V_{GS(Q)}$		-3.1		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	1.84GHz, Pout=100W WCDMA					
	1 Carrier in Doherty circuit	VSWR		10:1		
	All phase,					
	No device damages					

1805-1880MHz Typical Performance

Figure 3: Efficiency and power gain as function of Pout

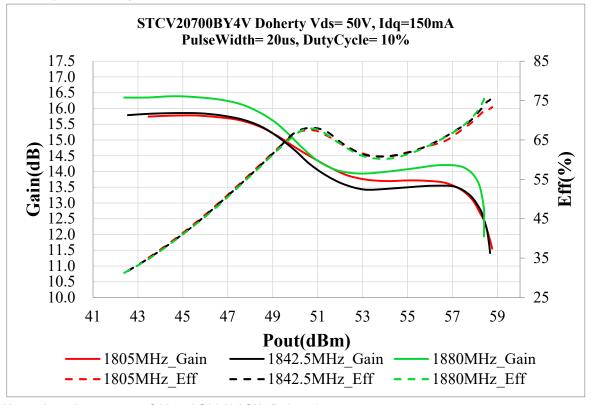
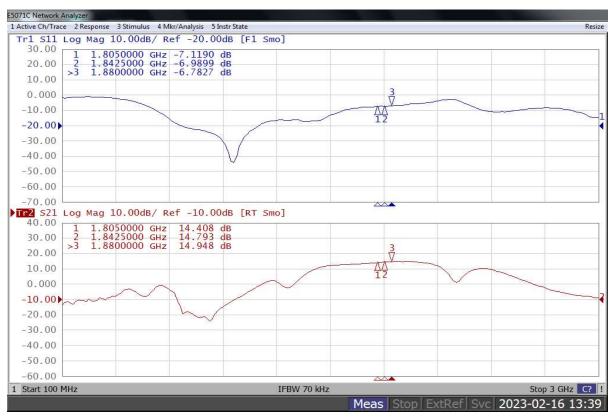
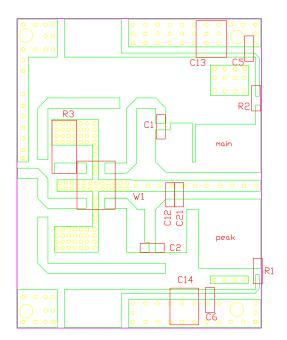




Figure 4: Network analyzer output, S11 and S21 (1.8GHz Doherty)

Document Number: STCV20700BY4V Preliminary Datasheet V2.1

Figure 5: Picture of application board Doherty circuit

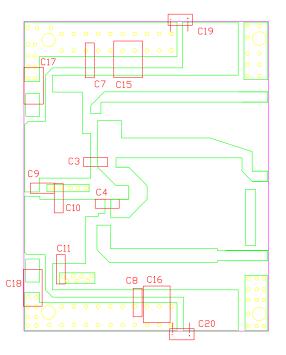


Table 4. Bill of materials of application board (PCB layout upon request, RO4350B 20mils)

Designator	Footprint	Comment	Quantity
C1, C2, C3, C4, C5, C6, C7, C8	0805	20 pF	8
C9, C10,	0805	1.5 pF	2
C11	0805	0.2 pF	1
C12, C21	0805	0.5 pF	2
C13, C14, C15, C16, C17, C18	1210	10uF/100V	6
C19, C20		100uF/63V	2
R1,R2	0603	10R	2
R3	2512	51R	1
W1		DC20F02 (YANTEL 2dB)	1

(pF capacitors are ATC 600F series)

1930-2000MHz Typical Performance

Figure 6: Efficiency and power gain as function of Pout

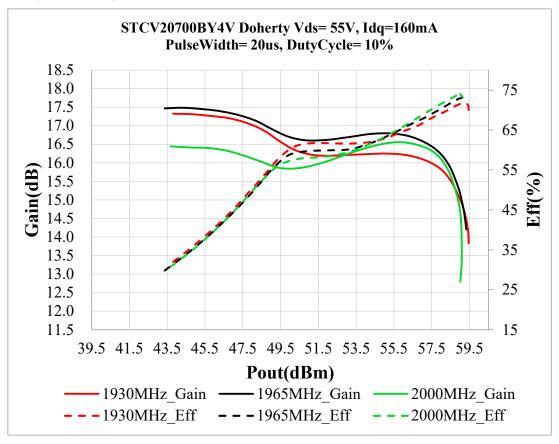
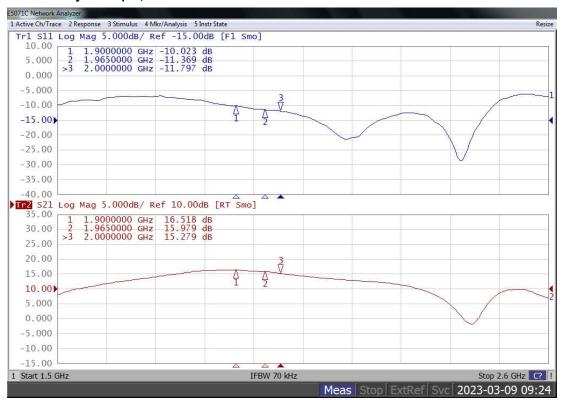
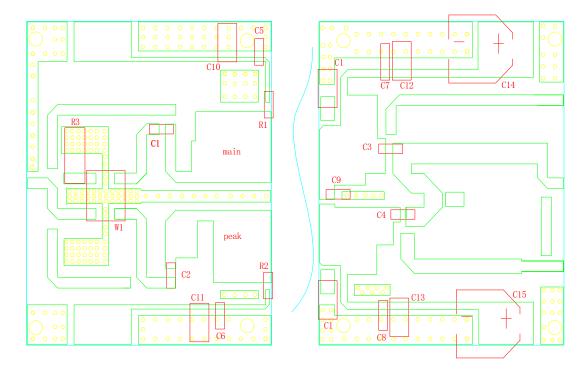
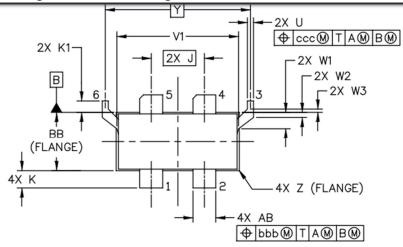



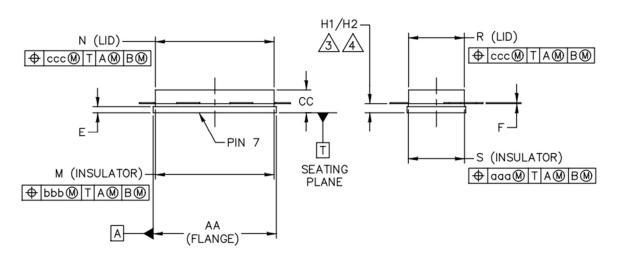
Figure 7: Network analyzer output, S11 and S21

Document Number: STCV20700BY4V Preliminary Datasheet V2.1

Figure 5: Picture of application board Doherty circuit




Table 4. Bill of materials of application board (PCB layout upon request, RO4350B 20mils)


Designator	Description	Comment	Part Number	Manufacture	
C1, C2, C5, C6, C7, C8	15pF High Q Capacitor	15 pF	251SHS150JSE	TEMEX	6
C3	6.8pF High Q Capacitor	6.8 pF	251SHS6R8CSE	ATC	1
C4	15pF High Q Capacitor	15 pF	ATC600F150JT250XT	ATC	1
C9	1.1pF High Q Capacitor	1.1 pF	251SHS1R1BSE	TEMEX	1
C10, C11, C12, C13	10 uF MLCC	10uF/100V	RS80R2A106M	MARUWA	4
C14, C15		100uF/63V			2
R1,R2	10 Ω power resistor	10R	ESR03EZPF100	ROHM	2
R3	51 Ω power resistor	51R	S2512N	AN2	
W1	2 dB Bridge	2 dB	DC20F02	YANTEL	1

(pF capacitors are ATC 600F series)

Document Number: STCV20700BY4V Preliminary Datasheet V2.1

Earless Flanged Ceramic Package; 6 leads- BY4V

	IN	CH	MILLIN	METER		IN	CH	MILLIM	ETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	.805	.815	20.45	20.70	R	.365	.375	9.27	9.53
BB	.380	.390	9.65	9.91	S	.365	.375	9.27	9.53
CC	.125	.170	3.18	4.32	U	.035	.045	0.89	1.14
Ε	.035	.045	0.89	1.14	V1	.795	.805	20.19	20.45
F	.004	.007	0.10	0.18	W1	.0975	.1175	2.48	2.98
H1	.057	.067	1.45	1.70	W2	.0225	.0425	0.57	1.08
H2	.054	.070	1.37	1.78	W3	.0125	.0325	0.32	0.83
J	.350	BSC	8.89 BSC		Y	.956	BSC	24.28	B BSC
K	.0995	.1295	2.53	3.29	Z	R.000	R.040	R0.00	R1.02
K1	.070	.090	1.78	2.29	AB	.145	.155	3.68	3.94
М	.774	.786	19.66	19.96	aaa	.0	005	0.1	3
Ν	.772	.788	19.61	20.02	bbb	.c	010	0.2	25
					ccc	.0)15	0.3	88

Document Number: STCV20700BY4V Preliminary Datasheet V2.1

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2023/1/3	V1.0	Preliminary Datasheet Creation
2023/2/16	V2.0	Update according to device version V3
2023/3/9	V2.1	Add 1.93-2GHz application data

Application data based on LSM-23-01/09

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.