
40W, 2-3GHz 28V RF LDMOS FETs

Description

The MG2503S is a 40-watt, internally matched, single ended LDMOS FETs, designed for multiple applications within full band 2.0-3.0GHz.

It can be used in Class AB/B and Class C for all typical modulation formats, for CW and pulsed, linear or saturated applications.

• Typical Performance (On Innogration 2-3GHz fixture with device soldered):

VDS=28V Idq=100mA Vgs=2.45V CW						
F(MHz)	Pin (dBm)	Psat (dBm)	Psat (W)	I(A)	Gain (dB)	Eff(%)
2000	34.4	45.53	36	2.08	11.1	61.3
2200	31.8	45.54	36	2.47	13.7	51.8
2400	33	46.30	43	3.60	13.3	42.3
2600	32.3	46.90	49	3.65	14.6	47.9
2800	34.8	47.10	51	3.50	12.3	52.3
3000	34.7	45.30	34	3.00	10.6	40.3

•Typical Performance (On Innogration 2-2.5GHz fixture with device soldered):

VDS=28V Idq=50mA Vgs=2.4V CW						
F(MHz)	Pin (dBm)	Pout (dBm)	Pout (W)	I(A)	Gain (dB)	Eff(%)
2000	31	46.00	40	2.27	15.0	62.6
2100	32.6	46.10	41	2.35	13.5	61.9
2200	31.7	46.00	40	2.49	14.3	57.1
2300	31.6	46.00	40	2.54	14.4	56.0
2400	33	46.00	40	2.55	13.0	55.8
2500	33.3	46.00	40	2.48	12.7	57.3

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift

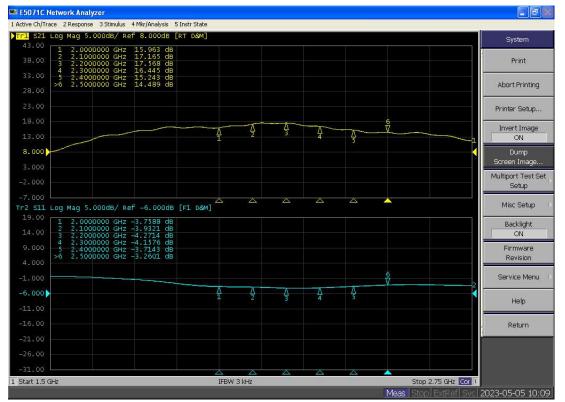
Suitable Applications

- S band amplifier
- ISM applications
- Cellular amplifier

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+65	Vdc

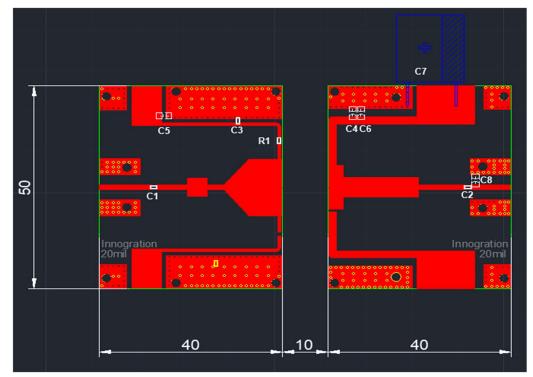
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant


Document Number: MG2503S Product Datasheet V1.0

GateSource Voltage	V_{GS}	-10 to +10	Vdc
Operating Voltage	Vdd	+32	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Va	lue	Un	nit	
Thermal Resistance, Junction to Case	Cynisol	Value		Onic		
$T_c = 85^{\circ}C$, DC test		Rejc 1.		.3 °C/		
Table 3. ESD Protection Characteristics						
			Class			
Test Methodology			-			
Human Body Model (per JESD22A114)			Class 2			
Table 4. Electrical Characteristics (TA = 25 °C unless otherw	ise noted)	1	1	1	1	
Characteristic	Symbol	Min	Тур	Max	Unit	
DC Characteristics						
Zero Gate Voltage Drain Leakage Current	IDSS			100	μA	
$(V_{DS} = 65V, V_{GS} = 0 V)$	IDSS			100	μΛ	
Zero Gate Voltage Drain Leakage Current				1	μA	
$(V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V})$	DSS				μΑ	
GateSource Leakage Current						
(V _{GS} = 10 V, V _{DS} = 0 V)	I _{GSS}		1		μΑ	
Gate Threshold Voltage	M. (0)		2.0		v	
$(V_{DS} = 28V, I_D = 450 \ \mu A)$	V _{GS} (th)		2.0		v	
Gate Quiescent Voltage			2.4			
$(V_{DD}$ = 28 V, I _D = 50mA, Measured in Functional Test)	$V_{GS(Q)}$		2.4		V	
Functional Tests (On Demo Test Fixture, 50 ohm system) V_{DD} = 28	8 Vdc, I _{DQ} = 50 mA,	f = 2000 -2500	MHz, Pulse 0	CW Signal	•	
Power Gain	Gp	12	13		dB	
Drain Efficiency@P3dB	η _D		55		%	
3 dB Compression Point	P-3dB	40			W	
_oad Mismatch (In Innogration Test Fixture, 50 ohm system):	/ _{DD} = 28 Vdc, I _{DQ} =	50 mA, f = 250	0 MHz		·	
VSWR 5:1 at 40W pulse CW Output Power	No Device D	egradation				

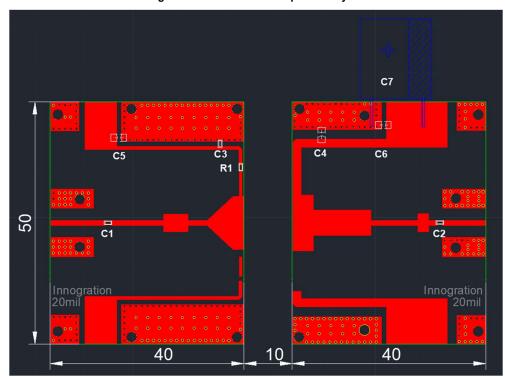

2-2.5GHz

TYPICAL CHARACTERISTICS

Figure 2. Network analyzer output S11/S21 (VDS=28V IDQ=200mA VGS=2.95V)

Figure 3. Test Circuit Component Layout

Table 5. Test Circuit Component Designations and Values


Part	description	Model	
R1	7.50Ω	Chip Resistor	
C1,C2,C3	20pF 600F		
C5,C6	10UF 1210		
C4	20pF MQ10111		
C7	470UF/63V		
C8	0.3 pF MQ10111		
РСВ	20mil Rogers4350B		

2-3GHz

TYPICAL CHARACTERISTICS

Figure 3. Network analyzer output S11/S21 (VDS=28V IDQ=200mA VGS=2.95V) Figure 3. Test Circuit Component Layout

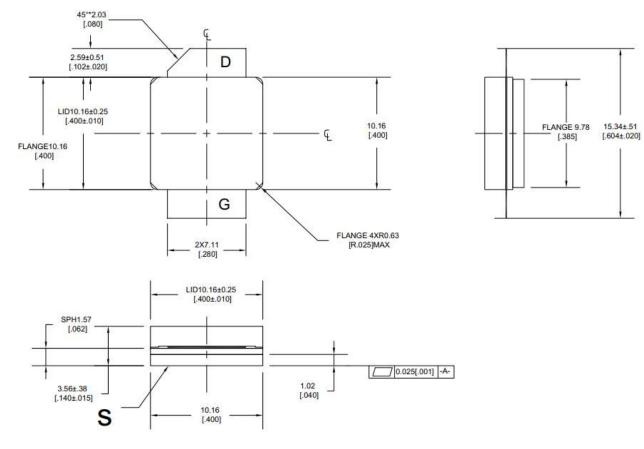


Table 6. Test Circuit Component Designations and Values

Part	description	Model	
R1	7.50Ω	Chip Resistor	
C1, C3	15pF 600F		
C5,C6	10uF 1210		
C2,C4	10pF 600F		
C7	470UF/63V		
РСВ	20mil Rogers4350B		

Package Outline

Earless flanged ceramic package; 2 leads

Unit: mm [inch]

Tolerance .xx +/- 0.01 .xxx +/- 0.005 inches

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2023/5/5	Rev 1.0	Product Datasheet

Application data based on SYX-23-17/18

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose."Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.