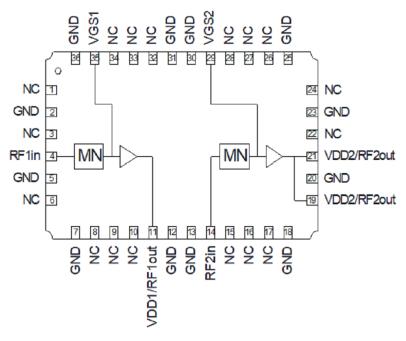
Document Number: GMAH0225-15T6 Preliminary Datasheet V1.2

200-2500MHz, 15W, 28V GaN PA Module

Description

The GMAH0225-15T6 is a 15-watt peak power, integrated Power Amplifier Module, designed for broad band applications, with frequencies from 200 to 2500 MHz. The module is 50 Ω input and requires minimal external components. The module offers a much smaller footprint than traditional discrete component solutions.


Product Features

- Operating Frequency Range: 200 2500 MHz
- Operating Drain Voltage: 28V (up to 36V)
- 50 Ω Input
- Gain at 10 W avg.: ≥22dB
- Saturated Power: ≥15W
- Single Ended Device
- 6x10 mm surface mount air cavity package
- Support CW/pulsed or any other modulation signals
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Applications

- Tactical communication
- Wideband spectrum management
- LMR
- Benchtop Amplifier
- EMC test

Pin Configuration and Description

Table 1. Maximum Ratings

Rating		Symbol	Symbol		Value	
DrainSource Voltage		V _{DSS}		150		Vdc
GateSource Voltage		V _{GS}		-10 to +2		Vdc
Operating Voltage		V _{DD}	+36			Vdc
Storage Temperature Range		Tstg		-65 to +150		°C
Case Operating Temperature		Tc	Tc		+150	
Operating Junction Temperature		T,	+225		°C	
Table 2. Thermal Characteristics		•	L			4
Characteristic		Symbol	Value		Unit	
Thermal Resistance, Junction to Case		_	3.5			
T_{C} = 87°C, T_{J} =175°C, DC test		Rejc			°C/W	
able 3. ESD Protection Characteristic	s					
Test Methodolo		Class				
Human Body Model(HBM) (JEDEC Standard		TBD				
Charged Device Model (CDM) (JEDEC Stan	F)	TBD				
able 4. Electrical Characteristics						
Parameter	Condition		Min	Тур	Max	Unit
Frequency Range			100		2600	MHz
Power Gain @ Pout=10W Avg.	Driver + Final Stage			22		dB
P _{SAT}			15		20	W
Drain Efficiency @ P _{SAT}			35	55		%
Unless otherwise noted: TA = 25° C, V _{DD} = 2	8 V, Pulse Width=1	00 us, Duty cy	cle=10%			<u>.</u>
oad Mismatch of per Section (On Test Fix	ture, 50 ohm syste	em): V _{DD} =30	V, f = 2.6 GHz			
VSWR 10:1 at P3dB pulse CW Output Powe	No D	evice Degradatio	n			

Reference Circuit of Test Fixture Assembly Diagram

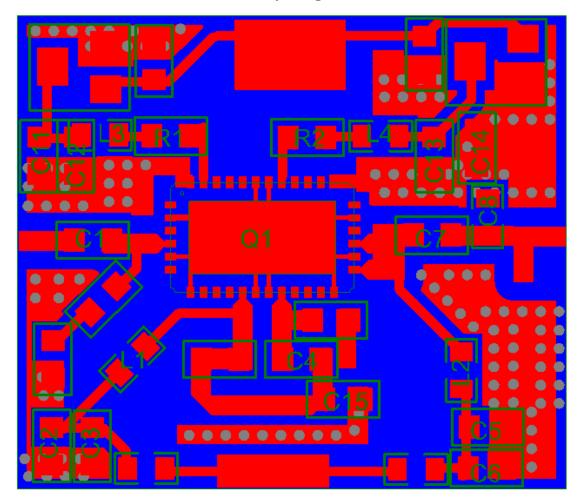
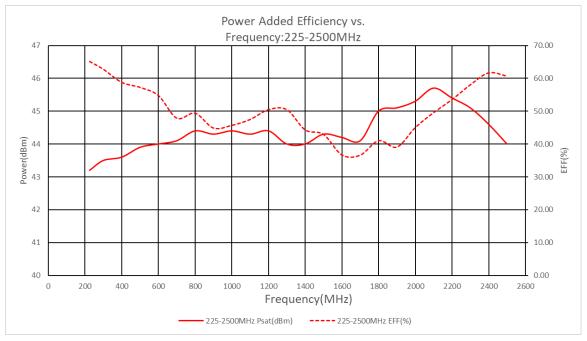


Figure 1. Test Circuit Component Layout


Component	Description	Suggested	
		Manufacturer	
C1	30pF	DLC75D	
C2,C5,C12,C13	100pF	DLC75D	
C3,C6,C11,C14	10uF		
C4,C7	100pF	ATC600S	
C8,C15	1.5pF	DLC75D	
R1,R2	Chip Resistor,200hm	0603	
L1	330nH	0603	
L2	100nH		
РСВ	RO4350B 20mils	Rogers	

TYPICAL CHARACTERISTICS

Figure 2. Psat and Effiiciency vs. Frequency

Test Condition: Pulse CW, Pulse width=100us, Duty Cycle=10%

Driver: VDS=30V,Vgs=-2.65V Idq=40mA Final: VDS=30V Vgs=-2.75V Idq=100mA

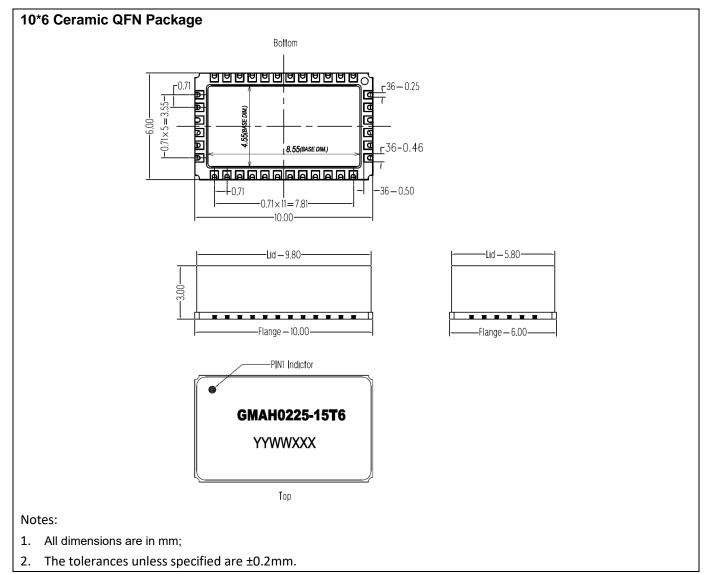
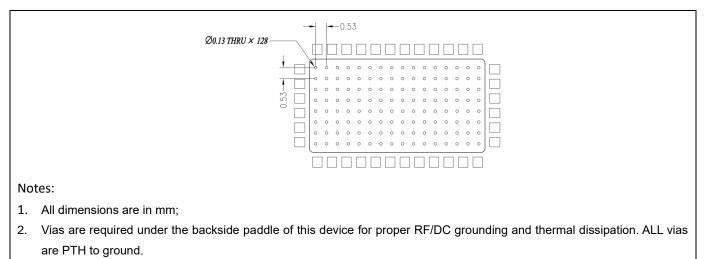


Figure 3. Network Analyzer output S11/S21 Driver: VDS=30V ,Vgs=-2.65V Idq=40mA/Final: VDS=30V Vgs=-2.75V Idq=100mA


Trc1 dB Mag 9 dB / Ref 22 dB Cal 1 S11 dB Mag 11.7 dB / Ref 26.6 dB Trc2 Cal Mem3[Trc2] dB Mag 11.7 dB / Ref 26.6 dB Mem4[Trc1] dB Mag 9 dB / Ref 22 dB S11 S21 38.3-1.00000 **∲**dz 228 dE 43 M٠ M 1 M 2 <u>M</u>4 CHz 26.6-GHZ 171-5 - 14.9-3.2-M4 - 🕅 5 . -20.2--31.9--43.6--55.3-Ch1 Start 100 MHz Pwr -10 dBm Stop 3 GHz 5/20/2021, 6:37 PM

Document Number: GMAH0225-15T6 Preliminary Datasheet V1.2

Package Dimensions

Mounting Footprint Pattern

Revision history

Table 6. Document revision history

Date	Revision	Datasheet Status
2021/2/20	Rev 1.0	Preliminary Datasheet
2021/5/20	Rev 1.1	PCB info simplified according to ZL-21-11
2022/3/15	Rev 1.2	Package outline update

Application data based on ZL-21-11

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.