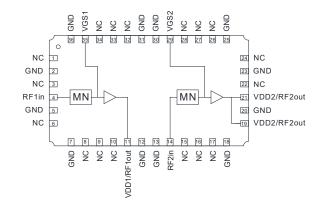
Innogration (Suzhou) Co., Ltd.

Document Number: GMAHR310-15T6 Preliminary Datasheet V1.2

30MHz-1000MHz, 15W, 28V GaN PA Module


Description

The GMAHR310-15T6 is a 15-watt peak power, integrated Power Amplifier Module, designed for broad band and broadcast applications, with frequencies from 30 to 1000 MHz. The module is 50 Ω input and requires minimal external components. The module offers a much smaller footprint than traditional discrete component solutions.

Product Features

- Operating Frequency Range: 30 1000 MHz
- Operating Drain Voltage: +28 V (Up to 32V)
- 50 Ω Input
- Gain at 5 W avg.: \geq 30 dB
- Saturated Power: ≥41 dBm
- Single Ended Device
- 6x10 mm Surface Mount Package
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Pin Configuration and Description

Top View

Pin No.	Symbol	Description		
11,19,21	VDD/RF OUT Transistor 1 and transistor 2, Drain Bias & RF Output			
29, 35	VGS	Transistor 1 and transistor 2, Gate Bias		
4, 14	RF IN	Transistor 1 and transistor 2, RF Input		
1, 3, 6, 8-10, 15-17, 22, 24, 26-28, 32-34	NC	No connection		
2, 5, 7, 12, 13, 18, 20, 23, 25, 30, 31, 36 Package Base	GND	DC/RF Ground. Must be soldered to EVB ground plane over arra vias for thermal and RF performance. Solder voids under Pkg Bas result in excessive junction temperatures causing permanent dama		

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V_{DSS}	150	Vdc

Innogration (Suzhou) Co., Ltd.

Document Number: GMAHR310-15T6 Preliminary Datasheet V1.2

					Treinnary D	
GateSource Voltage		V _{GS}		-10 to +2		
Operating Voltage		V _{DD}		+40		
Storage Temperature Range		Tstg	-65 to +150			°C
Case Operating Temperature		Tc	+150			°C
Operating Junction Temperature		TJ	+225			°C
Table 2. Thermal Characteristics						
Characteristic		Symbol		Value		
Thermal Resistance, Junction to Case		Date	TBD			°C/W
T_c = 87°C, T_J =175°C, DC test		Rejc				
Table 3. ESD Protection Characteris	stics					
Test Method		Class				
Human Body Model(HBM) (JEDEC Stand		TBD				
Charged Device Model (CDM) (JEDEC S	F)	TBD				
Table 4. Electrical Characteristics						
Parameter	Condit	Condition		Тур	Max	Unit
Frequency Range			30		1000	MHz
Power Gain @ Pout=5W Avg.	Driver + Fin	Driver + Final Stage				dB
Gain flatness					4	dB
P3dB			41			dBm
Drain Efficiency@ Pout=5W Avg.			35			%
Unless otherwise noted: TA = 25°C, V_{DD}	=28 V, Pulse Width=2	0 us, Duty cyc	le=10%			
oad Mismatch of per Section (On Test	Fixture, 50 ohm syste	em): V _{DD} = 28	V, I _{DQ} =50 mA, f =	= 1.0 GHz		
		NI. 7				

VSWR 10:1 at P3dB pulse CW Output Power

No Device Degradation

Reference Circuit of Test Fixture Assembly Diagram

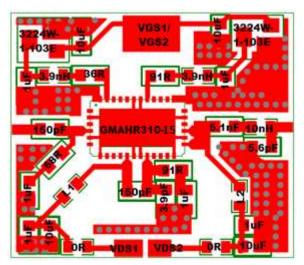
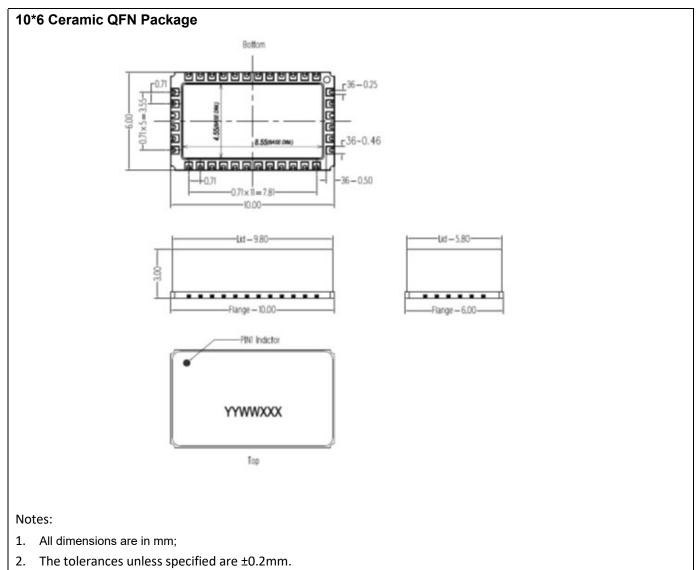
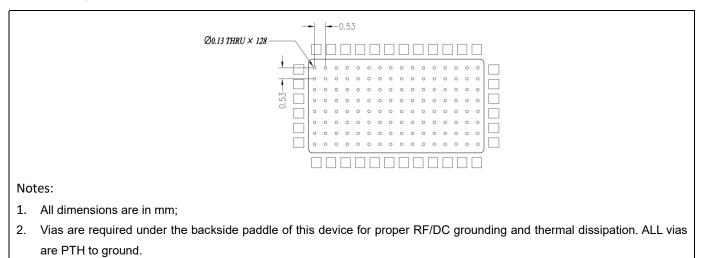




Figure 1. Test Circuit Component Layout 30-678MHz, VDD1=12V, IDQ1=50mA, VDD2=28V, IDQ2=100mA L1, L2: Coil Inductor Ø0.5 BN-61-2402 2turns

Package Dimensions Package Dimensions

Mounting Footprint Pattern

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2019/04/05	Rev 1.0	Preliminary Datasheet
2019/06/11	Rev 1.1	Preliminary Datasheet
2023/5/7	Rev 1.2	Add T6 suffix according to CQFN 10*6 used

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.