GaN HEMT 50V, 600W,2.3-2.4GHz RF Power Transistor

Description

The STCV24600BY4 is a dual path 600watt , Input matched GaN HEMT, ideal for applications from 2.3 to 2.4GHz especially for LTE/5G

There is no guarantee of performance when this part is used outside of stated frequencies.

• Typical RF performance on asymmetrical Doherty with device soldered

VDS= 50V, IDQ=100mA(Vgm=-3.3V, Vgp=-5.70V)

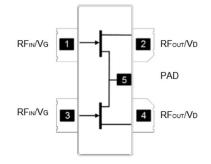
Pulsed CW: 20uS width, 10% cycle.

Freq (MHz)	Pulse CW Signal				P _{avg} =49dBm WCDMA Signal		
	P1	P1 gain	Р3	P3 Eff	Cp (dP)	Eff (%)	ACPR5M (dBc)
(10112)	(W)	W) (dB) (W) (%) Gp (dB)		EII (76)			
2300	596.9	14.55	720.8	71.5	14.8	52.5	-32.3
2350	575.8	14.3	692.4	74.4	14.4	53.0	-29.2
2400	466.3	13.89	612.7	75.7	14.1	53.4	-29.7

Applications

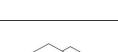
- Asymmetrical Doherty amplifier within 2.3-2.4GHz
- S band power amplifier
- CW or pulsed Amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors


Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

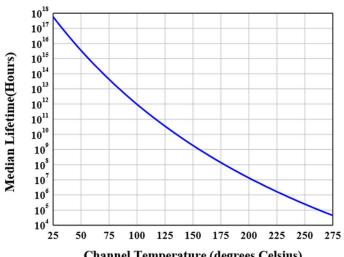
- Turning the device OFF
- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS


Figure 1: Pin Connection definition

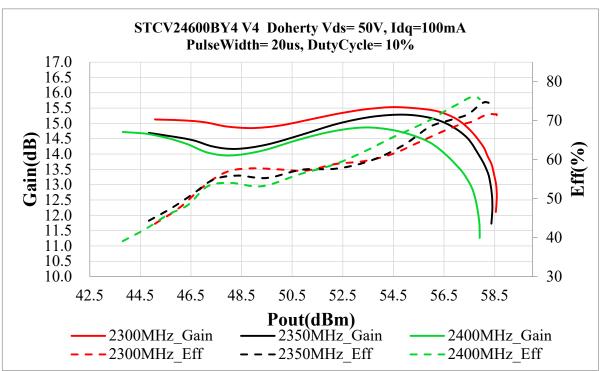
Transparent top view (Backside grounding for source)

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V_{GS}	-8 to +0.5	Vdc
Operating Voltage	V _{DD}	55	Vdc
Maximum gate current	lgs	77	mA

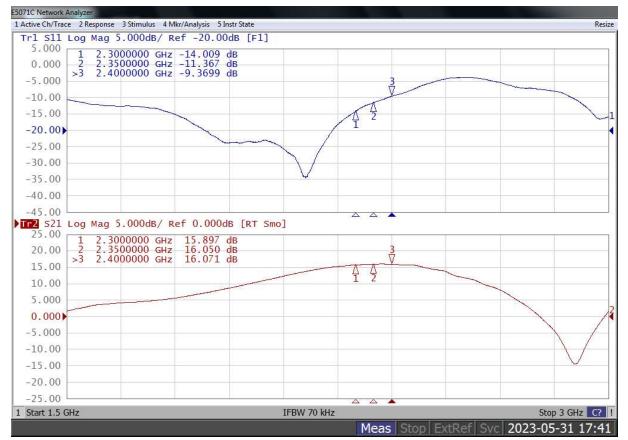

STCV24600BY4

Document Number: STCV24600BY4


		1			Р	Preliminary Da	atasheet V1
Storage Temperature Range			Tstg		-65 to +150		
Case Operating Temperature			Tc		+150		
Operating Junction Temperature		TJ		+225			°C
Table 2. Thermal Characteristic	S		<u>.</u>				
Characteris	ic	Symbol		Value			Unit
Thermal Resistance, Junction to Ca	se by FEA	_					
T_c = 85°C, at Pd=90W, on Doherty application board			Rejc		0.85		
Fable 3. Electrical Characterist	ics (TA = 25℃ unless	otherwis	se noted)				
DC Characteristics (Main path, mea	asured on wafer prior to p	ackaging)				
Characteristic	Conditions		Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=30mA		V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 30mA		V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage	VDS =50V, IDS=100mA, Measured in Functional Te		V _{GS(Q)}		-3.3		V
OC Characteristics (Peak path, mea	sured on wafer prior to p	ackaging)				
Characteristic	Conditions		Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=47mA		V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 47mA		V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage	VDS =50V, IDS=150mA, Measured in Functional Test		V _{GS(Q)}		-3.3		V
Ruggedness Characteristics							
Characteristic	Conditions		Symbol	Min	Тур	Max	Unit
Load mismatch capability	2.35GHz, Pout=80W WCDMA						

	Conditions		 • 7 P	 •
Load mismatch capability	2.35GHz, Pout=80W WCDMA 1			
	Carrier in Doherty circuit All phase,	VSWR	10:1	
	No device damages			

Figure 2: Median Lifetime vs. Channel Temperature



ill

Figure 3: Efficiency and power gain as function of Pout

Figure 4: Network analyzer output, S11 and S21

Figure 5: Picture of application board Doherty circuit

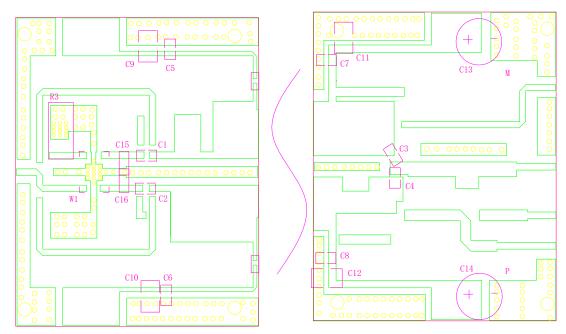
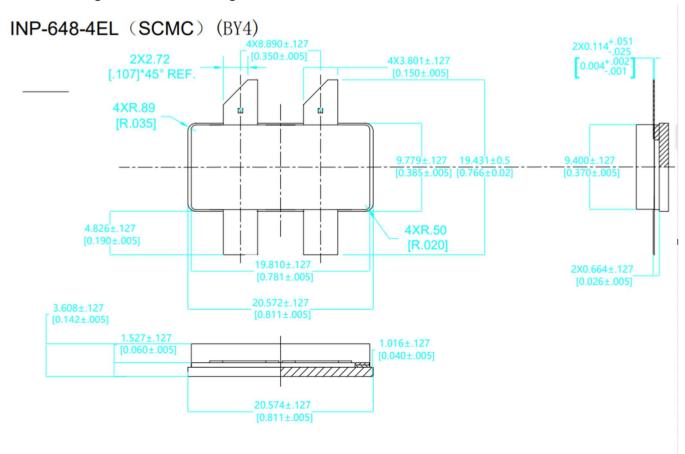



Table 4. Bill of materials of application board (PCB layout upon request, RO4350B 20mils)

Designator	Comment	Footprint	Quantity	
C1, C2, C5, C6, C7, C8	15 pF	0603/0805	6	
C3	2 pF	0603	1	
C4	10pF	0805	1	
C9, C10, C11, C12	10 uF/100V	1210	4	
C13, C14	100 uF/63V		2	
C15	0.2pF	0603	2	
C16	0.5pF	0603	1	
R1, R2	10 Ω	0603	1	
R3	51 Ω	2512	1	
W1	HC2100P03		1	

Document Number: STCV24600BY4 Preliminary Datasheet V1.1

Earless Flanged Ceramic Package; 4 leads

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2023/6/1	V1.0	Preliminary Datasheet Creation
2023/12/28	V1.1	Modify the drawing for lead width for BY4

Application data based on: LSM-23-18

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.