Document Number: STCV50200L4 Preliminary Datasheet V2.1

GaN HEMT 50V, 200W,4.7-5GHz RF Power Transistor

Description

The STCV50200L4 is a dual path 200watt, GaN HEMT, ideal for applications from 4.7 to 5GHz. It can be configured as asymmetrical Doherty for 5G application, delivering 25W average power according to normal 8.5dB back off.

It is housed in 15*5.5mm ceramic package with high thermally conductive flange.

There is no guarantee of performance when this part is used outside of stated frequencies.

Typical RF performance on application board with device soldered
 VDS = 48 V, IDQmain = 130 mA, VGSpeak=-5.6V

Eroa	Pulse CW Signal ⁽¹⁾			P _{avg} =44.5dBm WCDMA Signal ⁽²⁾			
Freq (GHz)	Gain P1 (dB)	P3 (dBm)	P3 (W)	Gp (dB)	η ₀ (%)	ACPR _{5M} (dBc)	
4.7	10.85	53.78	239	11.41	42.02	-28.35	
4.8	12.12	53.40	219	12.30	45.38	-32.45	
4.9	12.49	53.01	200	11.94	44.35	-33.66	
5.0	11.64	53.22	209	11.49	41.90	-31.51	

(1)Pulsed condition: 20us and 10%,

(2)1C WCDMA; Signal PAR = 10 dB @ 0.01% Probability on CCDF.

Applications

- N79 Doherty amplifier
- C band power amplifier application

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

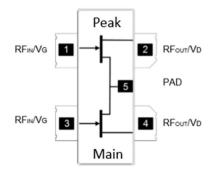

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Figure 1: Pin Connection definition

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Transparent top view (Backside grounding for source)

STCV50200L4

Innogration (Suzhou) Co., Ltd.

Document Number: STCV50200L4 Preliminary Datasheet V2.1

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V _{GS}	-8 to +0.5	Vdc
Operating Voltage	V _{DD}	55	Vdc
Maximum gate current	Igs	27	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _C	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit	
Thermal Resistance, Junction to Case by FEA	Rejc	2.4	°C /W	
T _C = 85°C, at Pout=25W WCDMA		2.4	-0 /٧٧	

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics (main path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=10mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 10mA	$V_{GS(th)}$	-4		-2	V
Gate Quiescent Voltage VDS =50V, IDS=110mA, Measured in Functional Test		$V_{GS(Q)}$		-3.1		V

DC Characteristics (peak path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=17mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 17mA	$V_{GS(th)}$	-4		-2	V
Gate Quiescent Voltage	ate Quiescent Voltage VDS =50V, IDS=130mA Measured in Functional Test			-3.13		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	5GHz, Pout=25W WCDMA on					
	Doherty	VCMD		10.1		
	All phase,	VSWR		10:1		
	No device damages					

Innogration (Suzhou) Co., Ltd.

Figure 3: Efficiency and power gain as function of Pout (4.7-5GHz Doherty)

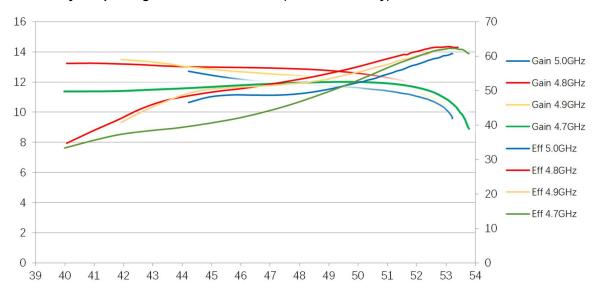
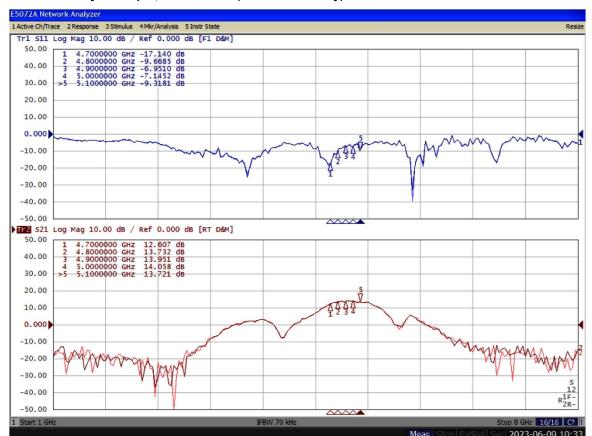



Figure 4: Network analyzer output, S11 and S21 (4.7-5GHz Doherty)

Innogration (Suzhou) Co., Ltd.

Figure 5: Picture of application board Doherty circuit

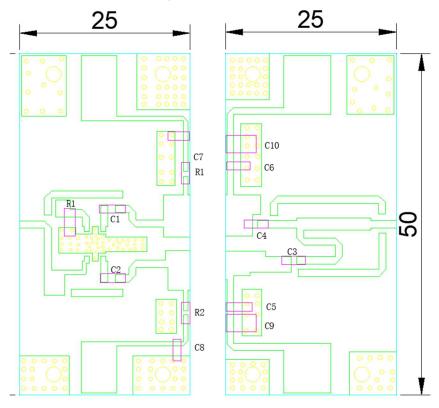
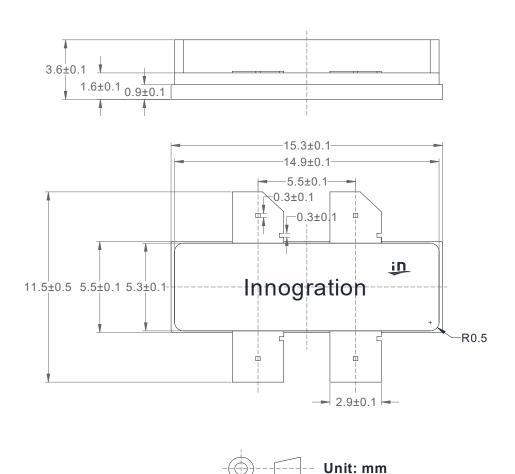



Table 4. Bill of materials of application board (PCB layout upon request, RO4350B 20mils)

Part	Quantity	Description	Part Number	Manufacture
C1,C2,C3,C5,C6,	7	3.9pFHigh Q	251SHS3R9BSE	TEMEX
C7,C8		Capacitor		
C4	1	8.2pFHigh Q	251SHS8R2BSE	TEMEX
		Capacitor		
C9,C10	2	10uF MLCC	GRM32EC72A106M	Murata
			E05	
R1,R2	2	10 Ω Power	ESR03EZPF100	ROHM
		Resistor		
R3	1	51 Ω Power	S1206N	RN2
		Resistor		
COUT1	1	3 dB Bridge	HC55F03	Yantel
T1	1	200W GaN	STCV50200L4	Innogration
		Dual Transistor		

Document Number: STCV50200L4 Preliminary Datasheet V2.1

Earless Flanged Ceramic Package; 4 leads

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status	
2022/5/24	V1.0	Preliminary Datasheet Creation	
2022/6/24	V1.1	Application update after input hybrid change	
2023/5/18	V2.0	Change name to STCV50200L4	
2023/6/15	V2.1	Modify the frequency low end to 4.7GHz	

Application data based on LWH-22-15/23-16

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.