
2.5-2.7GHz, 10W, 28V GaN PA Module

compatibility across all key 5G bands, N41/N78/N79.

Description

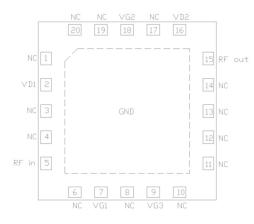
The GMAH2527-10P4 is a 28V 10-watt peak power, integrated 2-stage Power Amplifier Module, designed for small cell applications, with frequencies from 2.5 to 2.7 GHz. The module is 50 Ω input and output , it requires minimal external components. The module offers a much smaller footprint than traditional discrete component solutions. The module incorporates a Doherty final stage delivering high power added efficiency, excellent linearity for the entire module at 1.2-1.6W average power according to normal 8-9dB back off. This module is assembled in 7*7mm over molded plastic package, with complete thermally enhanced metal flange to dissipate heat effectively, while maintaining high RF performance.

It is part of 5G small cell PA MCM family from Innogration, with complete pin to pin

To use it at lower drain voltage for fine power tuning, it can be used to replace 4-10W LDMOS or GaAs Doherty MCM with better performance

•Typical Performance of 1 Carrier WCDMA at various power supply (On Innogration fixture with device soldered):

	VDS= 26 V, Idq1=3mA, Idq2=25mA,Vpeak=-5V				
	Pout= 32 dBm				
Freq (MHz)	Psat(dBm)	ACPR (dBc)	ACPR (dBc) Gain(dB) EF		
2500	39.92	-29.3	31.3	49.2	
2600	39.87	-32.5	31.7	48.1	
2700	39.58 -30.8 30.7		46.2		
	VDS= 28 V, I	dq1=3mA, Idq2=25	5mA,Vpeak=-5V	•	
		Pout= 32 dBm			
Freq (MHz)	Psat(dBm)	ACPR (dBc)	Gain(dB)	EFF (%)	
2500	40.51	-32.0	31.9	47.4	
2600	40.41	-35.9	32.5	46.5	
2700	40.13	-33.5	31.4	45.1	
	VDS= 32 V, Idq1=3mA, Idq2=25mA,Vpeak=-5V				
Pout= 33 dBm					
Freq (MHz)	Psat(dBm)	ACPR (dBc)	Gain(dB)	EFF (%)	
2500	41.26	-29.5	32.0	46.9	
2600	41.13	-33.4	33.2	46.3	
2700	40.78	-31.8	32.2	45.0	

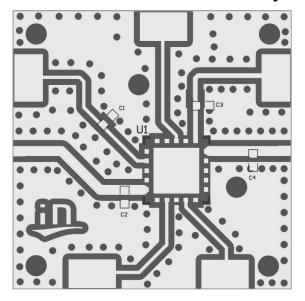

(1) WCDMA signal: 3GPP test model 1; 1 to 64 DPCH; Channel Bandwidth=3.84MHz,PAR =10.5 dB at 0.01 % probability on CCDF.

Features

• Industry leading RF performance for N79 5G Small cell, for instance

- ✓ 4*400mW / 160MHz
- 50 Ω Input/output matched,
- Integrated Doherty Final and driver Stage
- 7x7 mm Surface Mount Package, full copper flange underneath for grounding and heat dissipation

Pin Configuration and Description (Top view)



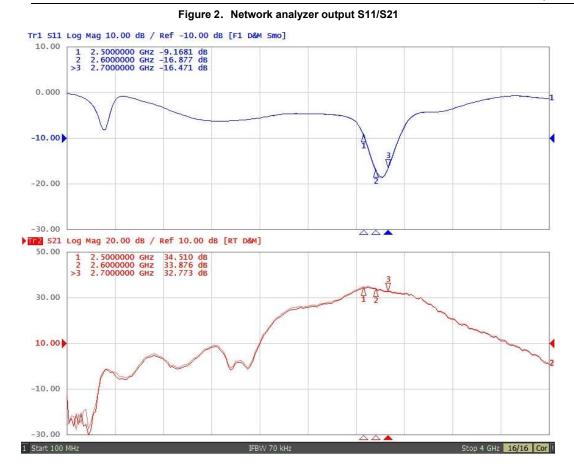
NC	No connection	
GND	Grounding	
RF In	RF input	
RF out	RF output	
VG1	Gate bias for driver stage	
VD1	Drain bias for driver stage	
VG2	Gate bias for peak path	
VD2	Drain bias for peak path	
VG3	Gate bias for main path	
VD3	Drain bias for main path	

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	150	Vdc
GateSource Voltage	V _{GS}	-10 to +2	Vdc
Operating Voltage	V _{DD}	+40	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C
Fable 2. Thermal Characteristics			
Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Dete	44	°C/W
T_{C} = 87°C, T_{J} =175°C, DC test	Rejc	14	

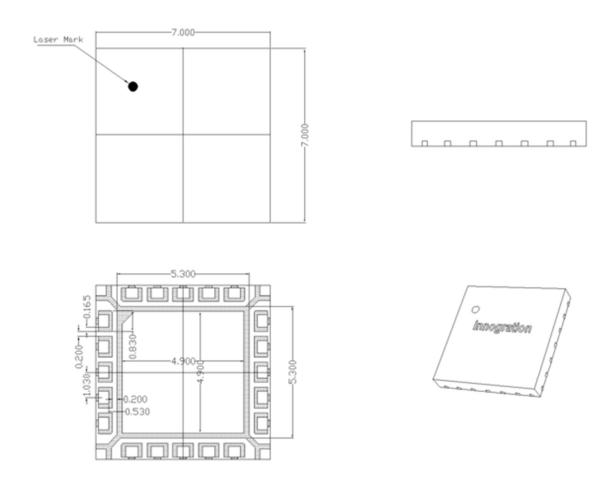
Reference Circuit of Test Fixture Assembly Diagram

Document Number: GMAH2527-10P4 Preliminary Datasheet V1.3


Component	Value	Description	
U1	GMAH2527_10P4	PA (7*7mm)	
C1、C3	12pF	ATC600S	
C2	0.3pF	ATC600S	
C4	0.4pF	ATC600S	
other	10uF	TDK1206	

TYPICAL CHARACTERISTICS

Vds=28V, Idq=28mA PulseWidth= 20us, DutyCycle= 10% 35.5 65 34.5 33.5 55 32.5 Gain(dB) 45 (%)**JJΞ** 31.5 30.5 35 29.5 28.5 25 27.5 26.5 15 30.5 32.5 24.5 26.5 28.5 34.5 36.5 38.5 40.5 Pout(dBm) 2500MHz_Gain -2600MHz_Gain 2700MHz_Gain - 2500MHz_Eff **– –** 2600MHz_Eff **-** 2700MHz_Eff


Figure 1. Power Gain and Drain Efficiency as Function of Pulse Output Power

VDS= 28V, Idq1=3mA, Idq2=25mA,Vpeak=-5V					
Freq (MHz)	P1(dBm)	P1 Gain(dB)	P5dB(dBm)	P5dB(W)	EFF (%)
2500	33.58	32.88	40.51	11.3	61.2
2600	33.40	33.28	40.41	11.0	62.2
2700	33.68	32.22	40.13	10.3	62.0

Package Dimensions

Revision history

Table 3. Document revision history

Date	Revision	Datasheet Status
2020/11/5	Rev 1.0	Preliminary datasheet creation
2021/10/18	Rev 1.1	Modify according to finalized 7*7mm package
2021/12/2	Rev 1.2	Modify according to last assembly result
2021/12/13	Rev 1.3	Define Psat at P3dB with retest result

Application data based on HJ-20-22/21-17

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.