GaN 50V, 150W, 2.45GHz RF Power Transistor

Description

The STBV25150C9 is a single ended 150 watt capable, GaN HEMT, ideal for ISM applications at 2.45GHz. The device offers a more cost effective solution than traditional ceramic device, housed in 12*10mm cost effective plastic open cavity package, and heat dissipated by copper flange directly. There is no guarantee of performance when this part is used outside of stated frequencies.

• Typical RF performance at selected 2.4-2.5GHz applications with device soldered on heatsink VDD = 48Vdc, Vgs=-3.56V, Idq=1mA

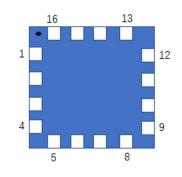
Pulse CW	Pulse width=20us,	dutv	cycle=20%
i uise ow.		uuty	Cycic=2070

Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
2400	51.51	141.5	71.1	18.75	52.65	184.0	78.3
2450	50.90	123.1	70.9	18.63	52.28	169.0	79.8
2500	50.27	106.5	69.9	18.1	51.8	151.3	80.1

CW:

Freq	Pin	Power Gain	Psat	Psat	Id	Psat
(MHz)	(dBm)	(dB)	(dBm)	(W)	(A)	Eff(%)
2400	35.5	16.6	52.15	164	4.60	74.3%
2450	36.5	15.5	52.01	159	4.30	77.0%
2500	37.4	14.4	51.79	151	3.98	79.0%

Applications


- 2.45GHz RF Energy
- S band power amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically –5 V $\,$
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Pin Configuration and Description (Top view)

STBV25150C9

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically –5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Document Number: STBV25150C9 Preliminary Datasheet V1.1

Pin No.	Symbol	Description
5-8	RF IN/Vgs	RF Input/Gate bias
13-16	RF OUT/Vds	RF Output/Drain bias
1-4,9-12	NC	Can be left as either no use or grounding
		DC/RF Ground. Proposed to be soldered to heatsink plane directly for the best CW thermal
Package Base	GND	and RF performance. Soldered through vias or copper coin allowed for pulsed CW
		applications, but will result in excessive junction temperatures and different RF performance

Table 1. Maximum Ratings

111

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V _{GS}	-8 to +0.5	Vdc
Operating Voltage	V _{DD}	55	Vdc
Maximum gate current	lgs	21.6	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Balo	17	
T _c = 85°C, at Pd=55W	Rejc	1.7	°C /W

Table 3. Electrical Characteristics (TA = 25° C unless otherwise noted)

DC Characteristics (Each path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=21.6mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 21.6mA	V _{GS(th)}	-4	-	-2	V
Gate Quiescent Voltage	VDS =48V, IDS=190mA, Measured in Functional Test	V _{GS(Q)}		3.0		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	2.45GHz, Pout=150W pulse CW					
	All phase,	VSWR		10:1		
	No device damages					

TYPICAL CHARACTERISTICS

Figure 1: Efficiency and power gain as function of Pout (VDD = 48Vdc, IDQ = 1mA, Pulse width=20us, duty cycle=20%)

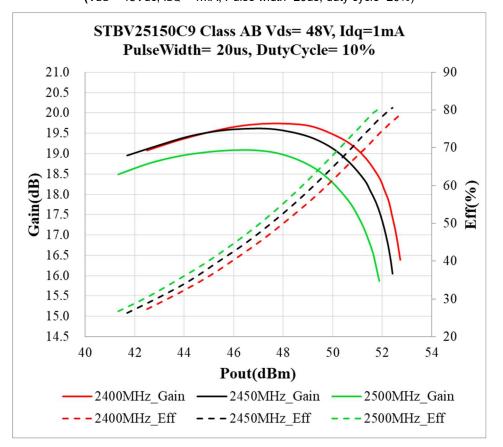
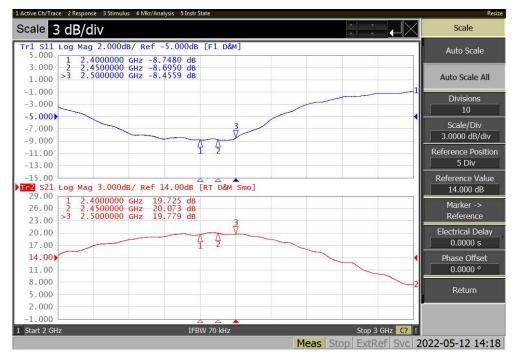
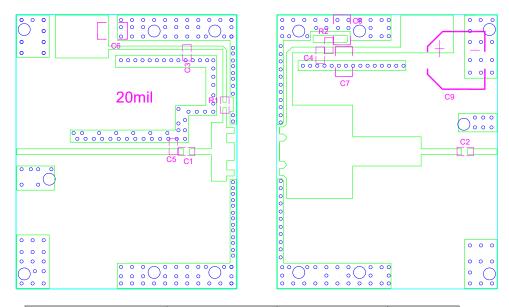




Figure 2: S11/S21 output from Network analyser

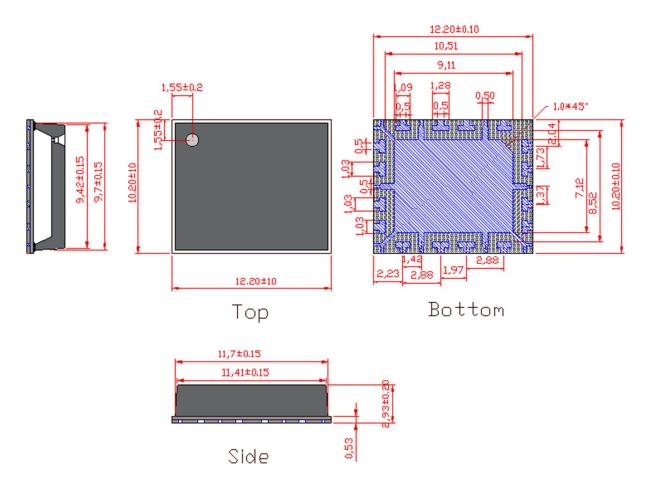


Figure 3: Reference design circuit (RO4350B 20mil, PCB DWG file upon request,)

Designator	Comment	Footprint	Quantity
C1, C2, C3, C4	12 pF	0805	4
C5	1.5 pF	0805	1
C6, C7, C8	10 uF/100V	1210	2
C9	100 uF/63V		1
R1	10 Ω	0603	1
R2	10 Ω	0805	1

Package Dimensions (Unit:mm)

Revision history

Table 1. Document revision history

Date	Revision	Datasheet Status
2022/5/13	Rev 1.0	Preliminary Datasheet
2022/1/31	Rev 1.1	Update the package drawing to be more understandable for soldering

Application data based on LSM-22-07

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.