Gallium Nitride 50V, 1000W, 2.5-2.7GHz RF Power Transistor

Description

The STCV271K0CY4V is a 1000-watt, internally matched GaN HEMT, designed for 5G cellular applications with frequencies from 2.5-2.7GHz, enabled by wide band VBW capability to support IBW up to 200MHz..

It can be configured as asymmetrical Doherty for 4G or 5G application, delivering 115 to 140W average power, according to normal 9.5 to 8.5dB back off.

There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

Typical Doherty Pulsed CW and 1C W--CDMA Characterization Performance within 2.5-2.7GHz: VDD = 50 Vdc, IDQA = 260 mA, VGSB = -5.3Vdc,

1C WCDMA; Signal PAR = 10 dB @ 0.01% Probability on CCDF.

Frog	Pulse CW Signal ⁽¹⁾			P _{avg} =50.5dBm WCDMA Signal ⁽²⁾				
Freq (GHz)	Р3	Р3	P4	P4	Cn (dP)	m (0/)	ACDD(dDc)	
(0112)	(dBm)	(W)	(dBm)	(W)	Gp (dB)	η₀ (%)	$ACPR_{5M}$ (dBc)	
2.50	59.52	897	60.36	1085	13.63	51.35	-30.40	
2.60	60.12	1028	60.45	1109	13.37	51.39	-31.29	
2.70	59.90	976	60.05	1011	12.80	51.98	-29.09	

Typical Doherty Pulsed CW and 1C W--CDMA Characterization Performance within 2.62-2.69GHz: VDD = 50 Vdc, IDQA = 260 mA, VGSB = -5.3Vdc,

1C WCDMA; Signal PAR = 10 dB @ 0.01% Probability on CCDF.

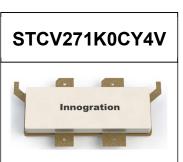
Freq Pulse CW Signal ⁽¹⁾					P _{avg} =50.5dBm WCDMA Signal ⁽²⁾		
(GHz)	Р3	Р3	P4	P4	Cn (dP)	Gp (dB) η _D (%)	ACPR _{5M} (dBc)
(0112)	(dBm)	(W)	(dBm)	(W)	ар (ав)		
2.62	51.35	136	60.15	1035	13.03	52.30	-31.31
2.655	50.85	121	60.08	1018	12.80	52.61	-29.83
2.69	50.80	120	60.02	1005	12.78	52.50	-28.56

Driver options:

STAV27130C6 (1 stage Doherty discrete)

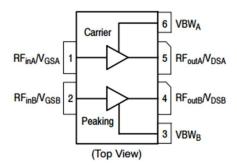
Applications

- · Asymmetrical Doherty amplifier within N41 5G band and B41 4G band
- S band power amplifier


Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch—off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level


Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Document Number: STCV271K0CY4V Preliminary Datasheet V1.0

Figure 1: Pin Connection definition

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain—Source Voltage	V _{DSS}	+200	Vdc
Gate—Source Voltage	V_{GS}	-8 to +0.5	Vdc
Operating Voltage	V_{DD}	55	Vdc
Maximum gate current	Igs	131	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	T_J	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Do 10	TDD	0C /M
T _C = 85°C, Pout=120W, 2.6GHz Doherty application board	Rejc	TBD	°C /W

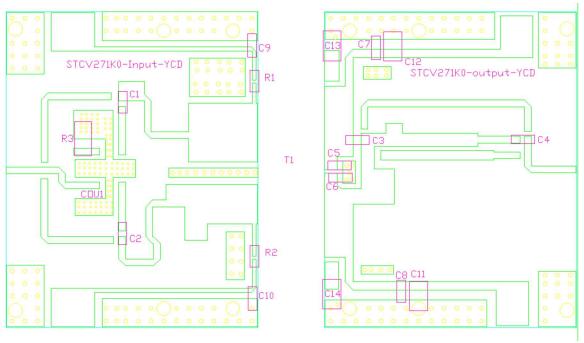
Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics (main path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=47mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 47mA	V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage	VDS =50V, IDS=240mA, Measured in Functional Test	$V_{GS(Q)}$		-3.1		V

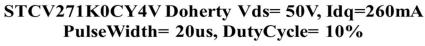
DC Characteristics (peak path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=84mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 84mA	V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage	VDS =50V, IDS=400mA Measured in Functional Test	$V_{GS(Q)}$		-3.1		V


Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	2.6GHz, Pout=120W WCDMA 1					
	Carrier in Doherty circuit All phase,	VSWR		10:1		
	No device damages					

Document Number: STCV271K0CY4V Preliminary Datasheet V1.0


Figure 3: Picture of application board Doherty circuit for 2.5-2.7GHz

Part	Quantity	Description	Part Number	Manufacture
C1,C2	7	10pFHigh Q	251SHS100BSE	TEMEX
C4,C7,C8,C9,C10		Capacitor		
C3	1	3.9pFHigh Q	251SHS3R9BSE	TEMEX
		Capacitor		
C5	1	1.3pFHigh Q	251SHS1R3BSE	TEMEX
		Capacitor		
C6	1	1.1pFHigh Q	251SHS1R1BSE	TEMEX
		Capacitor		
C11,C12,C13,C14	4	10uF MLCC	RS80R2A106M	MARUWA
R1,R2	2	10 Ω Power	ESR03EZPF100	ROHM
		Resistor		
R3	1	51 Ω Power	RFR50-20CT0421B	YT
		Resistor		
COU1	1	3 dB Bridge	X3C26P1-03S	Anaren
T1	1	1000W GaN	STCV271K0CY4V	Innogration
		Dual Transistor		

Figure 4: Efficiency and power gain as function of Pout

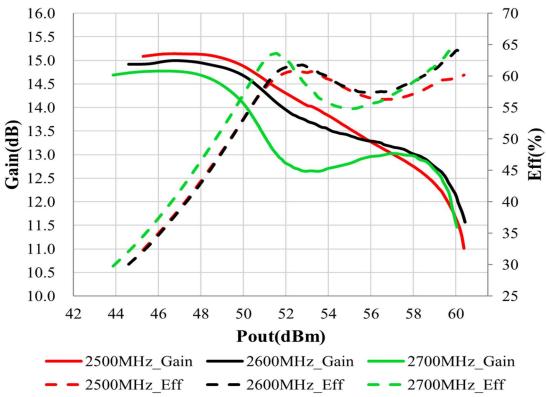
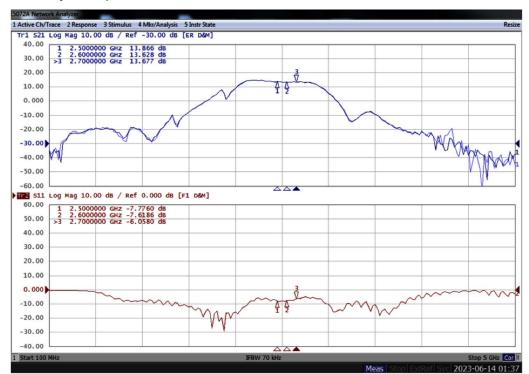
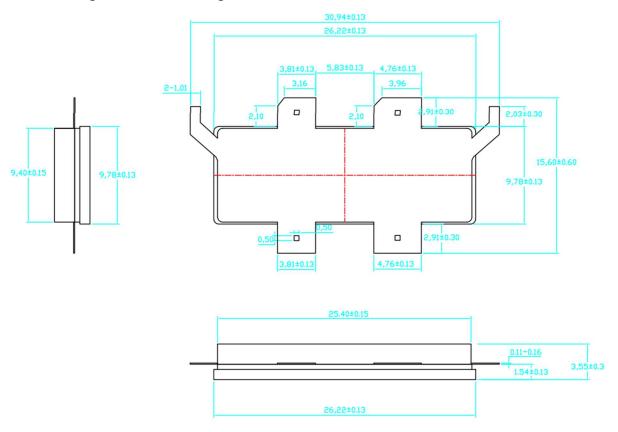




Figure 5: Network analyzer output, S11 and S21

Document Number: STCV271K0CY4V Preliminary Datasheet V1.0

Earless Flanged Ceramic Package; 6 leads- CY4V

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2023/5/12	V1.0	Objective Datasheet Creation
2023/6/16	V1.0	Preliminary Datasheet Creation

Application data based on LWH-23-14/15

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.