1030-1090MHz, 1200W, GaN RF Power Transistor

Description

The S3C111K2VS is a 1200-watt, high performance, internally matched GaN RF Power transistor, designed for multiple applications with frequencies from 1030-1090MHz.

It is featured for high power and high ruggedness, suitable for Industrial, Scientific and Medical

application, as well as Avionics application, within L band

Supported by high breakdown voltage, it is also usable at higher voltage up to 55V, with higher output power.

•Typical Pulsed CW Performance (On Innogration fixture with device soldered):

V_{DD} = 50 Volts, I_{DQ} = 150mA, Pulse CW, Pulse width=20us, Duty cycle=10%.

Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
1060	60.74	1185.9	71.8	20.68	61.12	1295.1	73.6

Applications and Features

- Suitable for L band pulse amplifier, wideband amplifier, EMC testing, ISM etc.
- · High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package
- High Reliability Metallization Process
- Excellent thermal Stability and Excellent Ruggedness
- · Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage (50V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

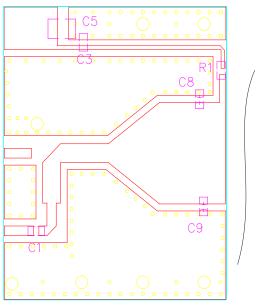
Table 1. Maximum Ratings

Symbol	Value	Unit
V _{DSS}	+200	Vdc
V _{GS}	-8 to 0	Vdc
V _{DD}	0 to 55	Vdc
lgf	141	mA
Tstg	-65 to +150	С
T _C	-55 to +150	С
TJ	+225	С
	V _{DSS} V _{GS} V _{DD} Igf Tstg T _C	V _{DSS} +200 V _{GS} -8 to 0 V _{DD} 0 to 55 lgf 141 Tstg -65 to +150 T _c -55 to +150

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case			
85 °C Case backside Temperature	Rejc	0.2	C/W
Pout = 1200 W, Pulse: 20 us PW, 10% DC			

Ψ

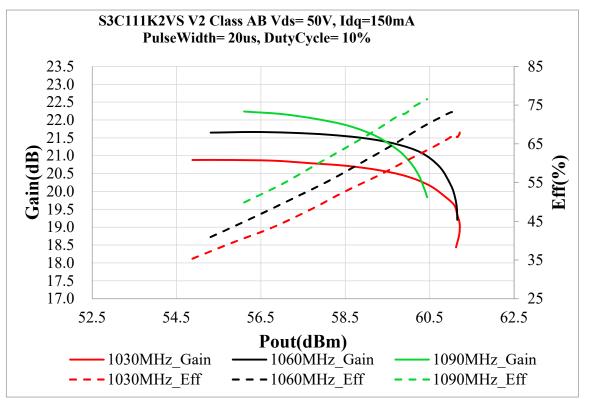

Table 3. Electrical Characteristics (Tc = 25° C unless otherwise noted)

DC Characteristics

Characteristic Conditions		Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage V _{GS} =-8V; I _{DS} =141mA		V _{DSS}		200		V
Gate Threshold Voltage V _{DS} = 50V, I _D = 141mA		V _{GS} (th)	-4		-2	V
Gate Quiescent Voltage V _{DS} =50V, I _{DS} =150mA, Measured in Functional Test		V _{GS(Q)}		-3.3		V
unctional Tests (In Innogration broa	dband Test Fixture, 50 ohm syste	em) :V _{DD} = 50 \	/dc, I _{DQ} = 150 ı	mA, f = 1060 N	/IHz, Pulse CW	
Characte	ristic	Symbol	Min	Тур	Max	Unit
Power Gain @ P3dB		Gp		17		dB
Drain Efficiency@P3dBt		Eff		70		%
3dB Compressed point		P3dB		1200		W
Input Return Loss		IRL		-7		dB
	1					

Mismatch stress at all phases(No device damage) VSWR

Reference Circuit of Test Fixture Assembly Diagram



10:1

Figure 1.	Test Circuit Component Layout
Table 5. Test Circu	it Component Designations and Values

rasio o. root enour compensatione and values				
Designator	Comment	Footprint	Quantity	
C1	2.7pF/250V	0603/0805	1	
C2, C3, C4	43 pF/250V	0805	3	
C5, C6	10uF/100V	1210	2	
C7	100uF/63V		1	
C8, C9, C10, C11, C12	8.2pF/250V	0603/0805	5	
C13, C14	6.8pF/250V	0603/0805	2	
C15	2.2pF/250V	0603/0805	1	
R1	10 Ω	0603	1	

TYPICAL CHARACTERISTICS

Figure 2. Power Gain and Drain Efficiency as Function of Pulse Output Power (1030-1090MHz)

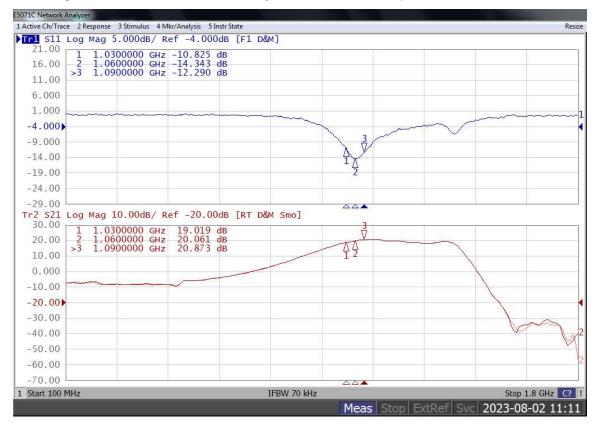
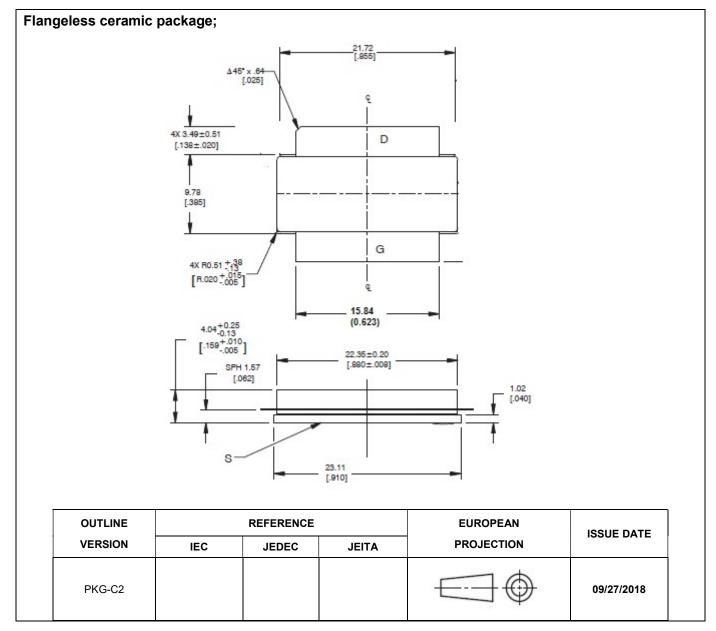



Figure 3. Network analyzer output S11/S21

Document Number: S3C111K2VS Preliminary Datasheet V1.0

Package Outline

Revision history

Table 6. Document revision history

Date	Revision	Datasheet Status
2023/8/2	Rev 1.0	Preliminary Datasheet

Application data based on LSM-23-25

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.