ITGV10400BY4 LDMOS TRANSISTOR

400W, 50V High Power RF LDMOS FETs

Description

The ITGV10400BY4 is a 400-watt capable, high performance, input matched LDMOS FET, designed for UHF band up to 1GHz. It can be used for both CW and pulse application.

It is featured for high power and high ruggedness, low cost, suitable for ISM RF Energy application especially 650 or 915MHz etc

• Typical Performance (On Innogration 915MHz fixture with device soldered):

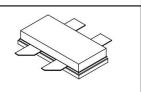
V_{DS}= 50V, Idq=100mA

Pulse:10uS width, 10% duty cycle

Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
915	55.54	358.1	66.2	22.04	56.15	412.4	67

CW:

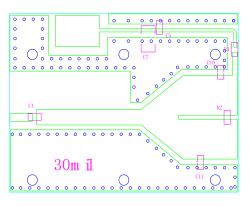
Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
915	55.17	328.8	64.0	21.75	55.69	371.0	65

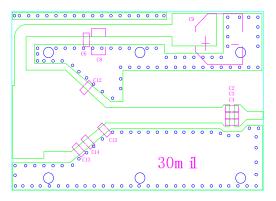

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- On chip RC network enable high stability and ruggedness
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Excellent thermal stability, low HCI drift
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Table 1. Maximum Ratings

Rating		lol	,	Value		Unit	
DrainSource Voltage	V _{DSS}	;	110			Vdc	
GateSource Voltage		-7 to +10			Vdc		
Operating Voltage	VDD			+50		Vdc	
Storage Temperature Range	Tstg		-65	to +150		°C	
Case Operating Temperature	Tc			+150		°C	
Operating Junction Temperature	TJ			+225		°C	
Table 2. Thermal Characteristics							
Characteristic		mbol Value			Unit		
Thermal Resistance, Junction to Case ,Case Temperature	Devid						
80°C, 400W CW,650MHz 50 Vdc, IDQ = 100 mA	Rejo	RөJC 0.45			°C/W		
Table 3. ESD Protection Characteristics	•				·		
Test Methodology				Class			
Human Body Model (per JESD22A114)		Class 2					
Table 4. Electrical Characteristics (TA = 25 $^{\circ}$ C unless ot	therwise not	ted)					
Characteristic		Symbol	Min	Тур	Max	Unit	
DC Characteristics (Per Side)						1	
Drain-Source Voltage		$V_{(BR)DSS}$	110			V	


ITGV10400BY4



ITGV10400BY4 LDMOS TRANSISTOR

V _{GS} =0, I _{DS} =18.0mA					
Zero Gate Voltage Drain Leakage Current	I _{DSS}			1	
$(V_{DS} = 50V, V_{GS} = 0 V)$				I	μA
Gate—Source Leakage Current				1	
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	IGSS			I	μA
Gate Threshold Voltage	V _{GS} (th)		2.6		V
$(V_{DS} = 50V, I_D = 600 \ \mu A)$	V GS(UT)		2.0		v
Gate Quiescent Voltage	V		3.1		V
(V_{DD} = 50 V, I_{D} = 100 mA, Measured in Functional Test)	$V_{GS(Q)}$		3.1		v


Reference Circuit of Test Fixture (915MHz)

Designator	Comment	Footprint	Quantity
C1, C10, C13	4.7pF/250V	0805	3
C2, C3, C4	20 pF/250V	0805	3
C5, C6	47pF/250V	0805/1210	2
C7, C8	10uF/100V	1210	2
C9	100uF/63V		1
C11, C12, C14, C15	6.8pF/250V	0805	4
R1, R2	10 Ω	0603	2

Figure 1: Network analyzer output, S11 and S21

Package Outline

Earless Flanged Ceramic Package; 4 leads

OUTLINE	REFERENCE			EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
PKG-BY4				$\bigcirc \bigcirc$	07/27/2023	

ITGV10400BY4 LDMOS TRANSISTOR

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2023/8/29	Rev 1.0	Preliminary Datasheet

Application data based on LSM-23-2

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.