GaN HEMT 50V, 330W, 3GHz RF Power Transistor

Description

The SC3033RVS is a 330W, single ended GaN HEMT, designed for multiple applications with Frequencies up to 3GHz. It is optimized thermally to better support wideband CW or wider pulse or higher duty cycle application.

There is no guarantee of performance when this part is used in applications designed outside of these frequencies.

It is the thermal enhancement of SL2033VS and SU1532V.

	Typical RF performance on 0.7-1.3GHz wideband application board with device soldered	under higher	duty cycle
--	--	--------------	------------

SC	3033RVS ^{V2}	² Vgs=-3.24	V Vds=50	V Idq=120mA	Pulse 300us	50%
Freq	Psat	Psat	IDS	Pin	Gain	Eff
(MHz)	(dBm)	(W)	(A)	(dBm)	(dB)	(%)
700	54.93	311.2	5.96	37.65	17.28	52.21
750	54.93	311.2	5.74	37.70	17.23	54.21
800	55.48	353.2	5.82	38.08	17.40	60.68
850	55.69	370.7	5.69	39.04	16.65	65.15
900	54.95	312.6	4.75	39.06	15.89	65.81
950	54.81	302.7	6.05	39.37	15.44	50.03
1000	55.77	377.6	6.61	40.47	15.30	57.12
1050	55.79	379.3	6.16	38.42	17.37	61.58
1100	55.91	389.9	5.62	38.61	17.30	69.38
1150	55.67	369.0	5.00	38.40	17.27	73.80
1200	55.27	336.5	4.39	39.33	15.94	76.65
1224	55.02	317.7	4.21	40.84	14.18	75.46

Note: 1-2G 200W CW data upon request

Applications

- L band power amplifier application
- P band power amplifier application
- S band power amplifier application

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V _{GS}	-8 to +0.5	Vdc
Operating Voltage	V _{DD}	32	Vdc
Maximum gate current	lgs	43.2	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C
Table 2. Thermal Characteristics			

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Date		
T _c = 85°C, at Pd=150W,	Rejc	0.55	°C /w

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=43.2mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 43.2mA	V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage VDS =50V, IDS=100mA, Measured in Functional Test		V _{GS(Q)}		-3.2		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	50V 2GHz, Pout=330W pulsed					
	CW, All phase,	VSWR		10:1		
	No device damages					

Figure 1. Network Analyzer result S11 and S21 VDS= 50V, IDQ = 500mA

Document Number: SC3033RVS Production Datasheet V1.1

Figure 2: Picture of application board for 700-1224MHz Class AB

Table 4. Bill of materials of application board (PCB layout upon request

Component	Description	Suggestion
C1,C2	10uF	10uF/100V
C3,C4	100pF	MQ101111
C5,C6	47pF	MQ101111
C17	1000uF/63V	Electrolyic Capacitor
R1	18 Ω	Chip Resistor
C7	4.7pF	MQ101111
C8	2pF	MQ101111
C9	5.1pF	MQ101111
C10	3.6pF	MQ101111
C11	3.0pF	MQ101111
C12,C13	1.8pF	MQ101111
C14	2.2pF	MQ101111
C15	2.7pF	MQ101111
C16	1pF MQ101111	
PCB	30mil	Rogers 4350B

Package Outline

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2023/5/14	V1.0	Production Datasheet Creation
2023/9/12	V1.1	Change carrier application to 0.7-1.3GHz data and indicate 1-2G data

Application data based on HL-23-21/HL-23-36/TC-23-58

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.