915MHz, 450W, 40V High Power RF LDMOS FETs

Description

The ITDE10450C2 is a 450-watt, internally matched LDMOS FET, designed for ISM applications including RF Energy at 915MHz. It Can be used in Class AB/B and Class C configuration, supporting both CW and pulsed signal

In typical application using 2*ITDE10450C2 in parallel, it can deliver more than 850W CW with high efficiency

•Typical Performance using single **ITDE10450C2** (On Innogration fixture with device soldered): VDD = 40 Volts, I_{DQ} = 50 mA, CW signal

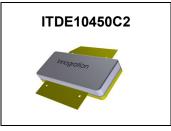
Freq(MHz)	Pin(dBm)	Pout(dBm)	Pout(W)	IDS(A)	Gain(dB)	EFF(%)
915	40	56.7	470	16.7	16.7	70.0%

• Typical Performance using ITDE10450C2*2 (On Innogration fixture with device soldered):

VDD = 40 Volts, I_{DQ} = 50 mA, CW signal

Freq(MHz)	Pin(dBm)	Pout(dBm)	Pout(W)	IDS(A)	Gain(dB)	EFF(%)
915	43	59.5	880	34.5	16.5	64.0%

Features


- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Internally Matched for Ease of Use
- Excellent thermal stability, low HCI drift

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Table 1. Maximum Ratings

Rating	Symbol		Value		Unit
DrainSource Voltage	V _{DSS}		95		Vdc
GateSource Voltage	V _{GS}	-1	0 to +10		Vdc
Operating Voltage	V _{DD}	+42			Vdc
Storage Temperature Range	Tstg	-65	5 to +150		°C
Case Operating Temperature	Tc		+150		°C
Operating Junction Temperature	T	T, +225			°C
Fable 2. Thermal Characteristics	· · ·			-	
Characteristic	Symbol		Value		Unit
Thermal Resistance, Junction to Case	Data		0.45		°C/W
T_C = 85°C, T_J =200°C, DC test	Rejc	Rejc 0.15		J	
Fable 3. ESD Protection Characteristics	·····				
Test Methodology			Class		
Human Body Model (per JESD22A114)		Class 2			
Table 4. Electrical Characteristics (TA = 25 C u)	nless otherwise noted)				
Characteristic	Symbol	Min	Тур	Max	Unit

DC Characteristics (per half section)

Document Number: ITDE10450C2 Preliminary Datasheet V1.0

Drain-Source Breakdown Voltage (V _{GS} =0V; I _D =100uA)	V _{DSS}	95			V
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 40 \text{ V}, \text{V}_{GS} = 0 \text{ V})$	I _{DSS}			10	μΑ
GateSource Leakage Current (V _{GS} = 6 V, V _{DS} = 0 V)	I _{GSS}			1	μΑ
Gate Threshold Voltage $(V_{DS} = 40V, I_D = 600 \text{ uA})$	V _{GS} (th)		2.0		V
Gate Quiescent Voltage (V_{DD} = 40 V, I_{DQ} = 100 mA, Measured in Functional Test)	$V_{\text{GS}(Q)}$	2.1	2.62	3.1	V

Functional Tests (On Innogration Test Fixture, 50 ohm system) : V_{DD} =40 Vdc, I_{DQ} = 50 mA, f = 915 MHz, Pin=43dBm CW Signal Measurements.

Power Gain	Gp		16.5		dB
Drain Efficiency @ P _{OUT}	ηD		64		%
Output Power	P _{out}		850		W
Input Return Loss	IRL		-7		dB
Load Mismatch (In Innogration Test Fixture, 50 ohm system): V _{DD} = 40 Vdc, I _{DQ} = 50 mA, f = 915 MHz					

VSWR 10:1 at 850W Output Power	No Device Degradation
at all Phase Angles, pulsed CW, 100us, 10%	

Document Number: ITDE10450C2 Preliminary Datasheet V1.0

Reference Circuit of Test Fixture Assembly Diagram 1*ITDE10450C2

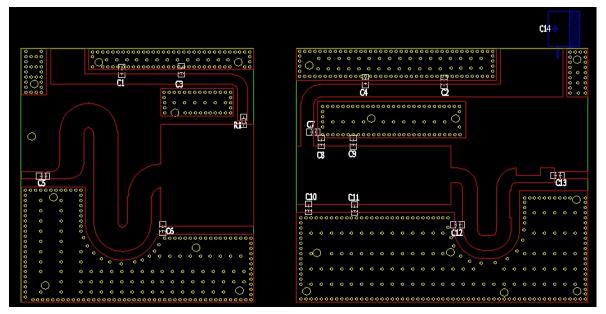
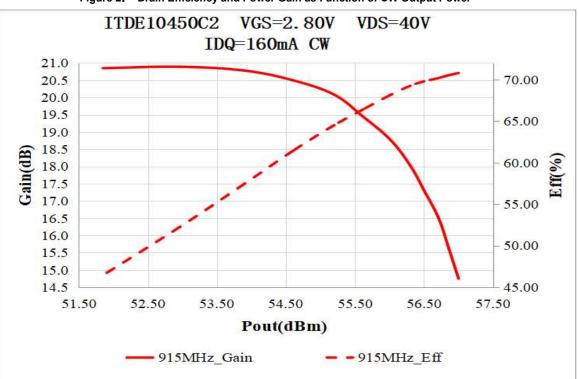
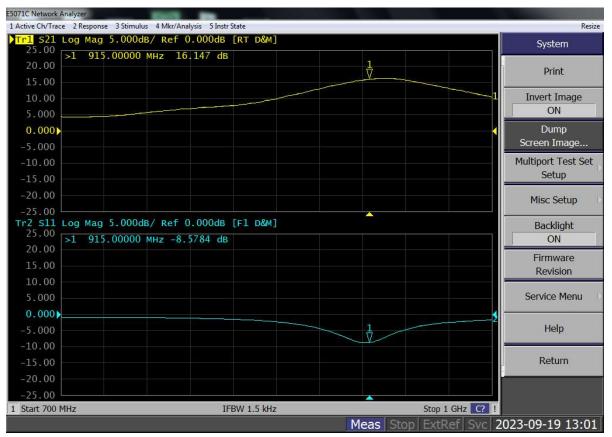



Figure 1. Test Circuit Component Layout

Table 1. Test Circuit Component Designations and Values


Component	Description	Suggestion
C1,C2	10uF	10uF/100V
C3,C4,C5	56pF	MQ101111
C6	7.5pF	MQ101111
C14	2000uF/63V	Electrolyic Capacitor
R1	10 Ω	Chip Resistor
C7	9.1pF	MQ101111
C8	12pF	MQ101111
С9	8.2pF	MQ101111
C10	11pF	MQ101111
C11	10pF	MQ101111
C12	0.5pF	MQ101111
C13	47pF	MCM-1-300V-D-470J
РСВ	30mil	Rogers 4350B

TYPICAL CHARACTERISTICS

Figure 2. Drain Efficiency and Power Gain as Function of CW Output Power

Reference Circuit of Test Fixture Assembly Diagram 2*ITDE10450C2

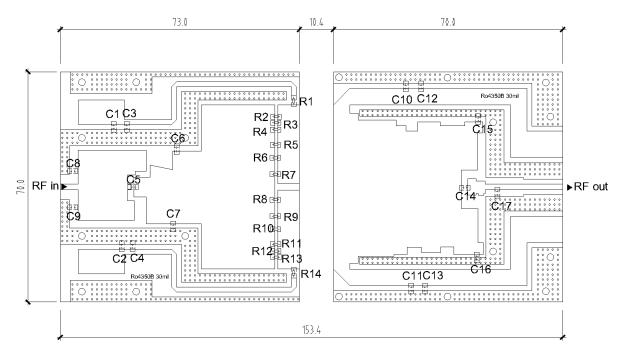


Figure 3. Test Circuit Component Layout

Component	Description	Suggested Types
C1、C2、C5、C10、C11	56pF	ATC800B
C14	56pF*3	ATC800B
C3、C4、C12、C13	Ceramic multilayer capacitor, 10uF	
C6	3.3pF	ATC800B
C7	5.6pF	ATC800B
C8	3.3pF	ATC800B
С9	1pF	ATC800B
C15、C16、C17	0.5pF	ATC800B
R1~R14	Chip Resistor,9.1Ω,1206	
РСВ	30mil thickness,RO4350B	

TYPICAL CHARACTERISTICS

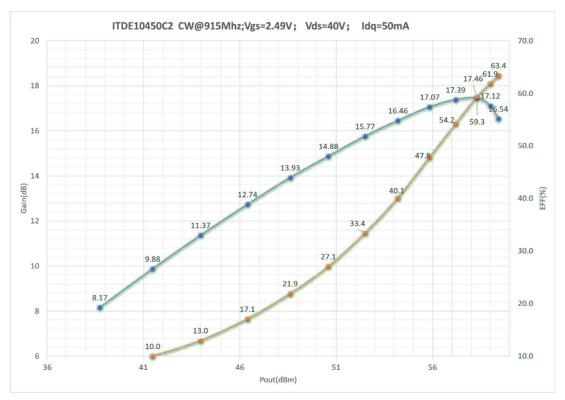
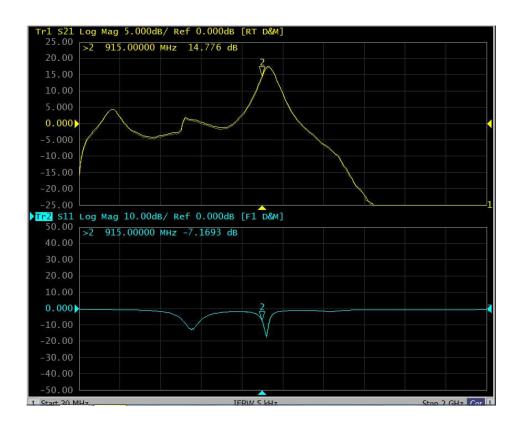
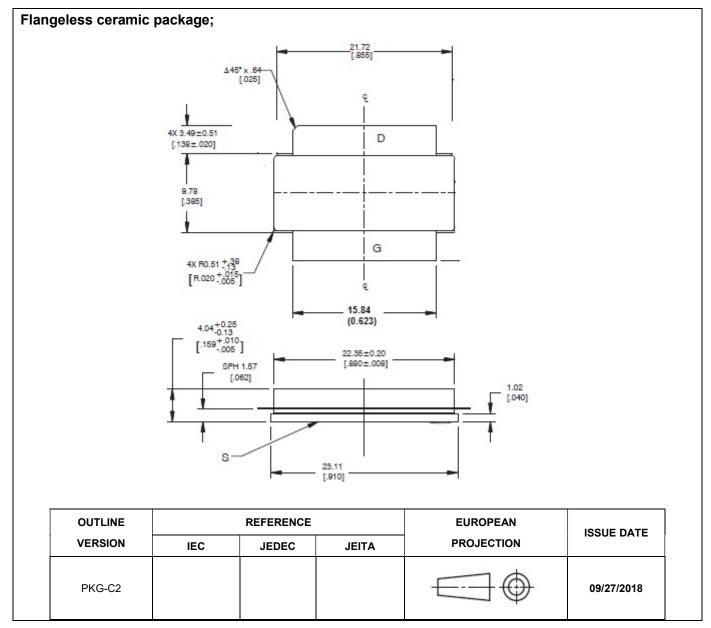




Figure 3. Network analyzer output S11/S21

Package Outline

Revision history

Table 6. Document revision history

Date	Revision	Datasheet Status
2022/1/12	Rev 1.0	Preliminary Datasheet
2023/9/19	Rev 1.1	Add single device application data

Application data based on JF-21-14/TC-23-60

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.