Innogration (Suzhou) Co., Ltd.

50W,50V Plastic RF LDMOS Transistor

Description

The ITGV10051C6 is a dual path 50-watt, highly rugged, LDMOS transistor, designed for any general applications at frequencies up to 1GHz, in 10*6mm QFN plastic package, supporting surface mounted on PCB through high density grounding vias.

It can be configured as Doherty to be as high efficiency and low cost driver for 4G/5G application within 0.6-1GHz.

• Typical Doherty RF Performance (On Innogration fixture with device soldered). Vds=50V Idq_main=55mA, Vgs_peak=2.4V

Frog	Pulse CW Signal			Pavg=37dBm WCDMA Signal		
Freq (MHz)	Gain P1dB (dB)	P3dB (W)	Eff@P3dB (%)	Gp (dB)	Eff(%)	ACPR₅м (dBc)
758	14.9	52	66	15.2	42.5	-32.1
803	15.8	47	66	16.3	43.1	-34.6
821	15.0	48	65	15.6	41.6	-34.5

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Suitable Applications

- P band power amplifier
- All 4G/5G cellular application within 0.5 to 1GHz

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+110	Vdc
GateSource Voltage	V _{GS}	-10 to +10	Vdc
Operating Voltage	V _{dd}	+55	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	۲J	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc 1.2		°C/W
T_C = 85°C, T_J =200°C, DC test	11030	1.2	0/11

Innogration (Suzhou) Co., Ltd.


Document Number: ITGV10051C6 Preliminary Datasheet V1.0

Table 3. ESD Protection Characteristics

Test Methodology		Class				
Human Body Model (per JESD22A114)		Class 2				
Table 4. Electrical Characteristics (TA = 25 $^{\circ}$ C unless otherwise)	vise noted)					
Characteristic		Min	Тур	Max	Unit	
DC Characteristics						
Drain-Source Voltage	N		110		v	
V _{GS} =0, I _{DS} =100uA	V _{(BR)DSS}		110			
Zero Gate Voltage Drain Leakage Current				1	μA	
$(V_{DS} = 90V, V_{GS} = 0 V)$	I _{DSS}					
GateSource Leakage Current				1	μA	
(V _{GS} = 11 V, V _{DS} = 0 V)	GSS					
Gate Threshold Voltage	N (III)		2		v	
$(V_{DS} = 50V, I_D = 600 \ \mu A)$	V _{GS} (th)		2		v	
Gate Quiescent Voltage	V		3.36		V	
$(V_{\text{DD}}$ = 50V, I_{D} = 55mA, Measured in Functional Test)	$V_{GS(Q)}$		0.00			
Load Mismatch (In Innogration Test Fixture, 50 ohm system):	$V_{DD} = 50Vdc, I_{DQ} = 50Vdc$	55mA, f = 800 l	MHz			
VSWR 10:1 at 50W pulse CW Output Power No Device Degradation						

Figure 1: Pin Connection definition

Transparent top view (Backside grounding for source)

Pin No.	Symbol	Description		
9,10 RF IN		RF Input, Vgs bias for main path		
14,15,16	RF IN/Vgs2	RF Input, Vgs bias for peak path		
33,34	RF OUT/VDD1	RF Output, VDD bias for Main path		
27,28,29 RF OUT/VDD2		RF Output, VDD bias for Peak path		
Rest pins	NC	No connection		
2,5,7,12,13,18,20,23,25,30,31,36,		DC/RF Ground. Must be soldered directly to heatsink or copper coin for		
Package Base	GND	CW application.		

758-821MHz application board

Reference Circuit of Test Fixture Assembly Diagram 20mils RO4350B

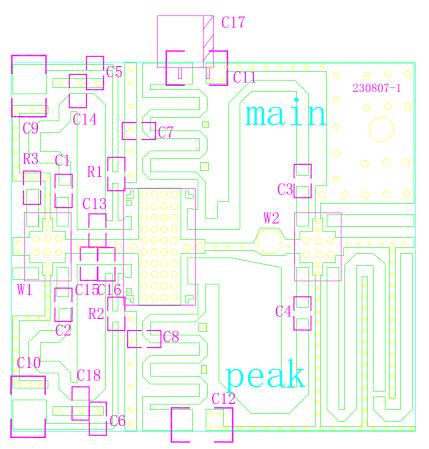


Figure 2. Test Circuit Component Layout

Table 5. Test Circuit Component Designations and Values

Designator	Comment	Footprint	Quantity
C1, C2, C3, C4, C5, C6, C7, C8	100pF/250V	0603	8
C9, C10, C11, C12	10uF/100V	1210	4
C13, C15	12pF/250V	0603	2
C14	6.8pF/250V	0603	1
C16	2.2pF/250V	0603	1
C17	100uF/63V		1
C18	8.2pF/250V	0603	1
R1, R2	10 Ω	0603	2
R3	51 Ω	0805	1
W1, w2	HC07F03		2

TYPICAL CHARACTERISTICS

Figure 5. Power Gain and Drain Efficiency as function of Power Output at Idq=160mA

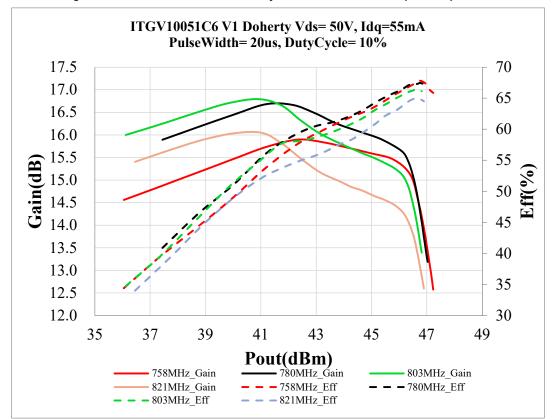
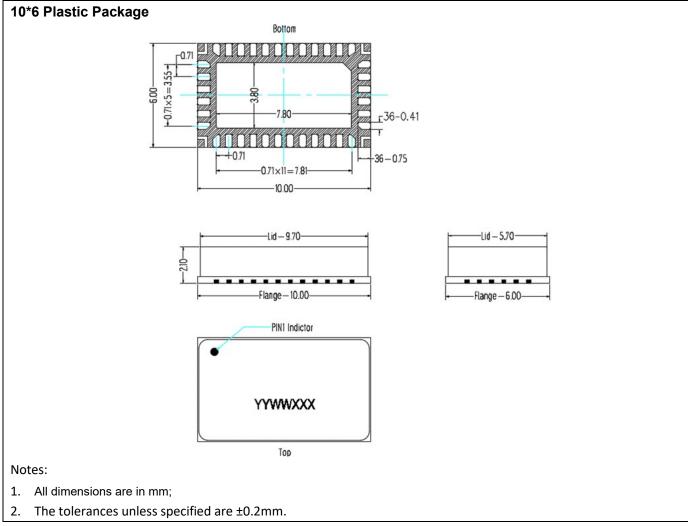



Figure 5.Network analyzer output S11/S21

Package Dimensions

Revision history

Table 7. Document revision history

Date	Revision	Datasheet Status
2023/8/22	Rev 1.0	Preliminary Datasheet

Application data based on LSM-23-27

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose."Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors