Gallium Nitride 50V, 55W, 3.4-4GHz RF Power Transistor

Description

The STAV40050BY4V is a 55-watt, internally matched GaN HEMT, designed for 5G cellular applications with frequencies from 3.4-4GHz.It can be configured as asymmetrical Doherty for 4G or 5G application, delivering 8 to 9W average power, according to normal 8 to 9dB back off. There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

• Typical Doherty Pulsed CW and 1C W--CDMA Characterization Performance:

VDD = 50 Vdc, IDQA = 50 mA, VGSB = -5.1Vdc,

(1)Pulsed condition: 20us and 10%,

(2)1C WCDMA; Signal PAR = 10 dB @ 0.01% Probability on CCDF.

Freq	Pulse CW Signal ⁽¹⁾			P _{avg} =39dBm WCDMA Signal ⁽²⁾			
(GHz)	P1-Gain (dB)	P3 (dBm)	P3 (W)	Gp (dB)	η ₀ (%)	ACPR₅м (dBc)	
3.4	12.92	48.36	68.6	13.03	49.85	-28.03	
3.5	13.47	48.33	68.3	13.55	47.00	-30.87	
3.6	13.78	48.07	64.2	14.08	46.35	-32.89	
3.7	14.55	47.86	60.5	14.69	47.15	-32.79	
3.8	15.45	47.80	60.2	15.19	48.55	-31.97	
3.9	14.87	47.65	58.2	14.43	48.50	-31.27	
4.0	13.47	47.75	60.0	13.19	47.23	-32.64	

Applications

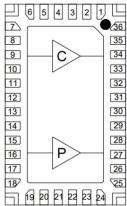
- 5G, 4G wireless infrastructure
- Wideband or narrowband power amplifier
- Test instruments
- S band power amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically –5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Figure 1: Pin Connection definition


Transparent top view (Backside grounding for source)

1 / 5

1. Turn RF power off 2. Reduce VGS down to VP, typically –5 V

Turning the device OFF

- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Pin No.	Symbol	Description		
8,9	RF IN/Vgs1	RF Input, Vgs bias for carrier path		
15,16,17	RF IN/Vgs2	RF Input, Vgs bias for peak path		
1	VDD1	VDD bias for Carrier path		
24	VDD2	VDD bias for Peak path		
34,35	RF Out 1	RF Output for main path		
27,28	RF Out 2	RF Output for Peak path		
Rest pins	NC	No connection		
2,5,7,12,13,18,20,23,25,30,31,36,	GND	DC/RF Ground. Must be soldered directly to heatsink or copper coin for		
Package Base	GND	CW application.		

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V _{GS}	-8 to +0.5	Vdc
Operating Voltage	V _{DD}	55	Vdc
Maximum gate current	lgs	9	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Bala	c	°C /W
T _c = 85°C, Pdiss=9W at Pavg=39dBm WCDMA 1 carrier	Rejc	0	-0.700

Notes: Based on expected carrier amplifier efficiency of Doherty, Pavg assumes 10% peaking amplifier contribution of total average Doherty

rated power. Thermal resistance is measured to package backside

Table 3. Electrical Characteristics (TA = 25° C unless otherwise noted)

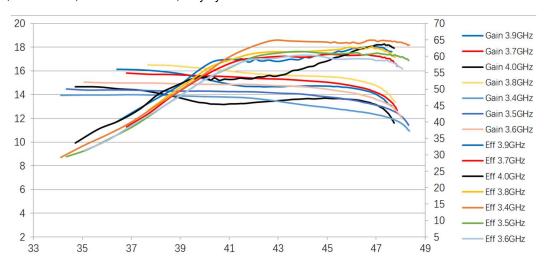
DC Characteristics (main path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=3mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 3mA	V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage VDS =50V, IDS=45mA, Measured in Functional Test		V _{GS(Q)}		-3.1		V

10:1

DC Characteristics (peak path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=5mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 5mA	V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage VDS =50V, IDS=60mA, Measured in Functional Test		V _{GS(Q)}		-3.1		V
Ruggedness Characteristics						
Characteristic	Conditions	Symbol Min Typ		Тур	Max	Unit
Load mismatch capability	3.8GHz, Pout=39dBm WCDMA					


VSWR

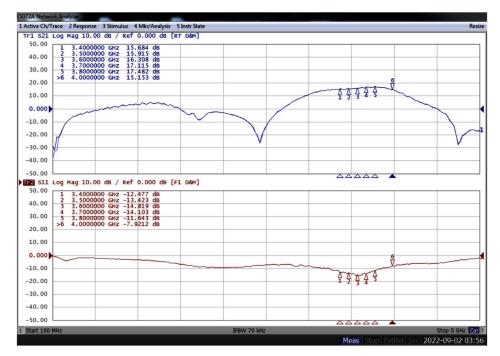
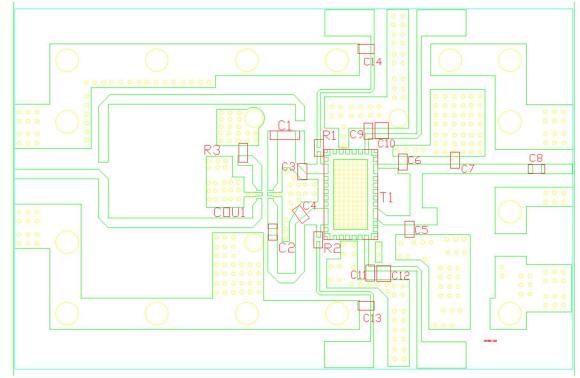
 No device damages

 Figure 2: Efficiency and power gain as function of Pout (Measured on 3.4-4GHz Doherty board)

1 Carrier, All phase,

VDD = 50 Vdc, IDQ = 50mA, Pulse width=50us, duty cycle=20%

Figure 3: Network plot for S11/S21

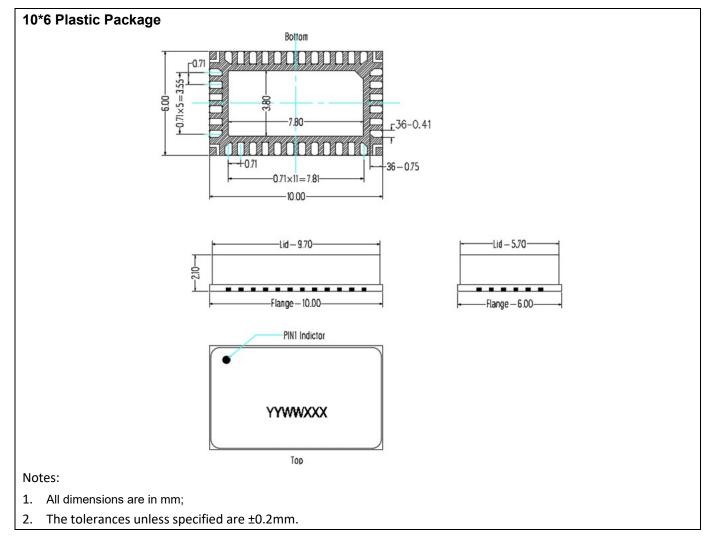

Figure 4: Picture of application board of 3.4-4GHz Doherty

Table 4. Bill of materials of application board (RO4350B 20mils, PCB layout upon request)

Part	Quantity	Description	Part Number	Manufacture
C1,C2,C8, C9,C11,C13,C14	7	8.2pFHigh Q 251SHS8R2BSE		TEMEX
		Capacitor		
C3,C4	2	1.2pFHigh Q	251SHS1R2BSE	TEMEX
		Capacitor		
C5	1	0.7pFHigh Q	251SHSOR7BSE	TEMEX
		Capacitor		
C10,C12	2	10uF MLCC	GRM32EC72A106ME	Murata
			05	
C6,C7	2	0.6pFHigh Q	251SHSOR6BSE	TEMEX
		Capacitor		
R1,R2	1	10 Ω Power	ESR03EZP10R0	ROHM
		Resistor		
R3	1	51 Ω Power	S1206N	RN2
		Resistor		
COUT1	1	3 dB Bridge	C3337J5003AF	ANAREN
T1	1	55W GaN	STAV40055C6	Innogration
		Dual Transistor		

Package Dimensions

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2022/9/6	V1.0	Preliminary Datasheet Creation
2022/12/9 V1.1		Update on Pin Definition

Application data based on: LWH-22-17

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.