Document Number: STAV50110C6 Preliminary Datasheet V1.1

GaN HEMT 50V, 110W, 4.8-5GHz Power Transistor

Description

The STAV50110C6 is a dual path 110W, internal matched GaN HEMT, operated from 4.8-5GHz. It features high gain, high efficiency, wide band and low cost, in 10*6mm open cavity plastic package. It can be configured as a single stage Doherty capable of delivering Pavg of 16W.

There is no guarantee of performance when this part is used outside of stated frequencies.

• Typical Doherty Single--Carrier W--CDMA Characterization Performance:

VDD = 50 Vdc, IDQA = 55 mA, VGSB = -5.4Vdc, Pout = 42dBm Avg., Input Signal PAR = 10 dB

@ 0.01% Probability on CCDF (On innogration application board with device soldered)

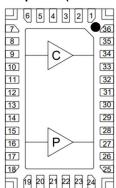
Freq(MHz)	Pout(dBm)	CCDF(dB	Ppeak(dBm)	Ppeak(W)	ACPR(dBc)	Gain(dB)	Efficiency(%)
4800	42.03	8.77	50.80	120.21	-30.17	13.03	44.41
4880	41.98	8.72	50.70	117.40	-30.84	13.33	46.22
4960	42.00	8.73	50.73	118.22	-33.26	13.23	45.44

Applications

- 5G Doherty amplifier within 4.8-5GHz
- C band power amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON


- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Figure 1: Pin Connection definition

Transparent top view (Backside grounding for source)

Pin No.	Symbol	Description
8,9,10,11 RF IN/Vgs1		RF Input, Vgs bias for Peak path
32,33,34,35	RF OUT/VDD1	RF Output, VDD bias for Peak path
14,15,16,17	RF IN/Vgs2	RF Input, Vgs bias for Main path

Innogration (Suzhou) Co., Ltd.

Document Number: STAV50110C6 Preliminary Datasheet V1.1

27,28	RF OUT/VDD2 RF Output, VDD bias for Main path				
1,24	DC1,DC2	DC decoupling for main and peak path			
Rest pins NC		No connection			
2,5,7,12,13,18,20,23,25,30,31,36,	ON ID	DC/RF Ground. Must be soldered directly to heatsink or copper coin for			
Package Base GND		CW application.			

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V_{GS}	-8 to +0.5	Vdc
Operating Voltage	V_{DD}	55	Vdc
Maximum gate current	Igs	13	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

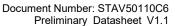
Table 2. Thermal Characteristics

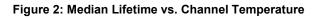
Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Rөjc	2.3	°C /W
T _C = 85°C, Pdiss=18W at Pavg=42dBm WCDMA 1 carrier	K⊎JC	2.5	

Notes: Based on expected carrier amplifier efficiency of Doherty, Pavg assumes 10% peaking amplifier contribution of total average Doherty rated power. Thermal resistance is measured to package backside

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics (main path, measured on wafer prior to packaging)


Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage VGS=-8V; IDS=5mA		V _{DSS}		200		٧
Gate Threshold Voltage VDS =10V, ID = 5mA		V _{GS(th)}	-4	-3.2	-2	V
Gate Quiescent Voltage VDS =50V, IDS=55mA, Measured in Functional Test		$V_{GS(Q)}$		-3		V


DC Characteristics (peak path, measured on wafer prior to packaging)

Characteristic Conditions		Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage VGS=-8V; IDS=8mA		V _{DSS}		200		V
Gate Threshold Voltage VDS =10V, ID = 8mA		$V_{GS(th)}$	-4	-3.1	-2	V
Gate Quiescent Voltage	VDS =50V, IDS=60mA, Measured in Functional Test	$V_{GS(Q)}$		-3		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	5GHz, Pout=42dBm WCDMA 1					
	Carrier, All phase,	VSWR		10:1		
	No device damages					

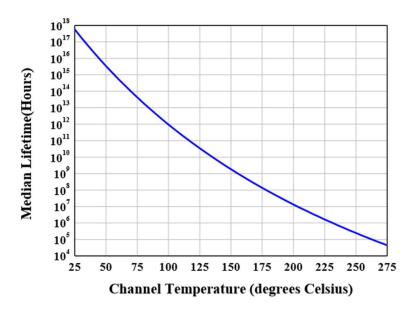
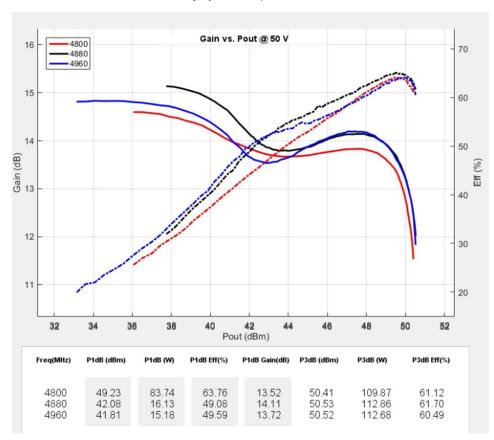
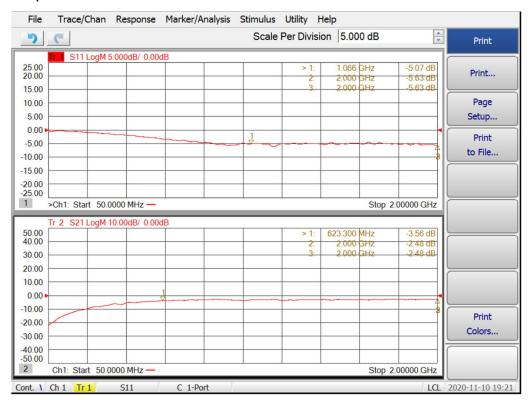



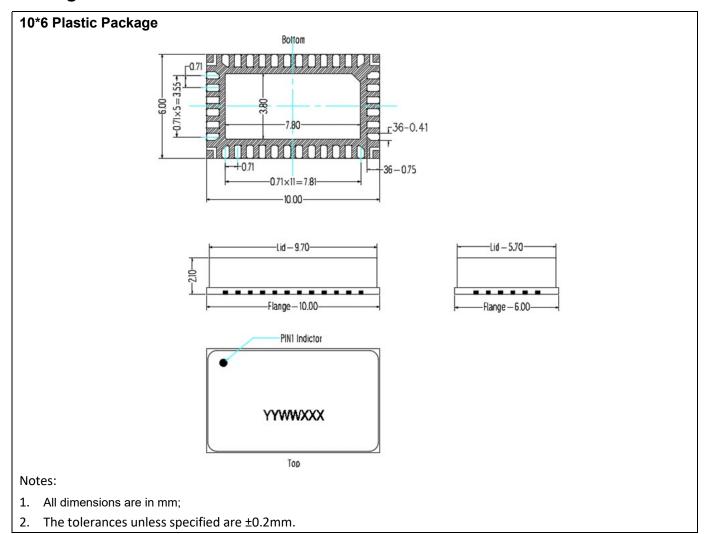
Figure 3: Efficiency and power gain as function of Pout

(VDD = 50 Vdc, IDQ = 50 mA, Pulse width=20us, duty cycle=20%)



Document Number: STAV50110C6 Preliminary Datasheet V1.1

Figure 4: S11/S21 output from Network analyser


Figure 4: Video impedance test

Innogration (Suzhou) Co., Ltd.

Document Number: STAV50110C6
Preliminary Datasheet V1.1

Package Dimensions

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status	
2020/11/10	V1.0	Preliminary Datasheet Creation	
2022/12/9	V1.1	Update on Pin Definition	

Application data based on: LWH-20-38

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.