Document Number: STAH58051GX Preliminary Datasheet V1.1

Gallium Nitride 28V 50W, RF Power Transistor

Description

The STAH58051GX is a 50W internally matched, GaN HEMT, designed from 5.0 to 6.0GHz, especially 5G NR or LTE application, as well as either Pulse or CW application

There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

 \bullet Typical performance (on narrow band fixture with device soldered) $$V_{DD}=28V\ I_{DQ}=10mA,\ CW$$

Freq(MHz)	Pin(dBm)	Pout(dBm)	Pout(W)	IDS(A)	Gain(dB)	Eff(%)
5700	37.77	48	63.10	3.62	10.23	62.25
5800	37.05	47.75	59.57	3.39	10.7	62.75
5900	37.67	47.35	54.33	3.1	9.68	62.59

•Typical performance (on broadband fixture with device soldered)

V_{DD}=28V I_{DQ}=100mA, CW

FREQ (MHZ)	P1dB(dBm)	P1dB(W)	P1dB Eff(%)	P1dB Gain(dB)	P3dB(dBm)	P3dB(W)	P3dB Eff(%)
5100	45.92	39.1	52.5	11.56	47.6	57.5	59.8
5200	45.95	39.4	51.6	11.4	47.56	57.1	58.4
5300	46	39.9	52.9	11.68	47.7	58.9	60.4
5400	46.08	40.6	53.0	11.82	47.8	60.2	60.8
5500	46.05	40.3	51.5	11.83	47.77	59.9	59.0
5600	46.11	40.8	51.9	12.06	47.92	62.0	59.8
5700	46.06	40.3	50.6	12.04	47.97	62.7	58.8
5800	45.96	39.4	49.6	11.84	47.9	61.6	57.8
5900	45.7	37.2	50.6	11.72	47.7	58.9	59.3

Applications and Features

- Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc.
- High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package
- High Reliability Metallization Process
- · Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage (28V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

STAH58051GX

Document Number: STAH58051GX Preliminary Datasheet V1.1

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	150	Vdc
GateSource Voltage	V _{GS}	-10,+2	Vdc
Operating Voltage	V _{DD}	36	Vdc
Maximum Forward Gate Current @ Tc = 25°C	Igmax	12.5	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature(See note 1)	T,	+225	°C
Total Device Power Dissipation (Derated above 25°C, see note 2)	Pdiss	75	W

Note: 1. Continuous operation at maximum junction temperature will affect MTTF

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Do 10	1.0	CAM
T _C = 85°C, T _J =200°C, RF CW operation	R⊕JC	1.8	C/W

Table 3. Electrical Characteristics (T_C = 25 °C unless otherwise noted)

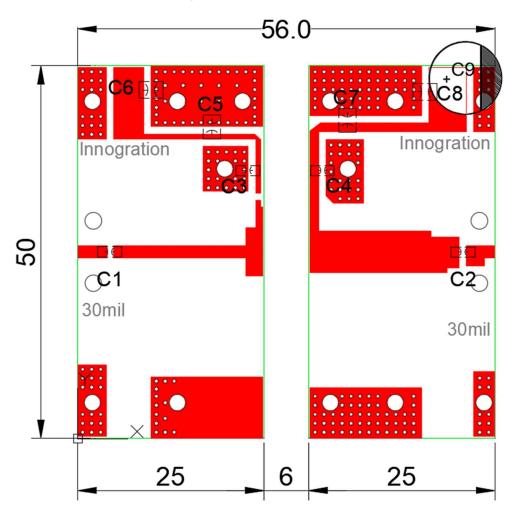
DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage V _{GS} =-8V; I _{DS} =12.6mA		V _{DSS}	150			V
Gate Threshold Voltage	ate Threshold Voltage V _{DS} = 28V, I _D =12.6mA		-4		-2	V
Gate Quiescent Voltage V _{DS} =28V, I _{DS} =100mA, Measured in Functional Test		V _{GS(Q)}		-3.16		V

Typical performance

5.7-5.9GHz

Figure 2: Small singal gain and return loss Vs Frequency Vds=28V, Idq=100mA, input power=0dBm



^{2.}Bias Conditions should also satisfy the following expression: Pdiss < (Tj - Tc) / RJC and Tc = Tcase

Document Number: STAH58051GX Preliminary Datasheet V1.1

Figure 3: Picture and Bill of materials of 5.7-5.9GHz wide band application circuit (Layout Gerber file upon request)

Component	Description	Suggestion	
C9	470uF/63V		
C5-C8	10uF	1210	
C1-C4	3pF	MQ300805C0G2E3R0BNDR	
R1	Chip Resistor,10Ω	0805	
РСВ	Rogers 4350B, Er = 3.48, thickness 30 mils, 1oz copper		

Document Number: STAH58051GX Preliminary Datasheet V1.1

5.1-5.9GHz

Figure 4: Small singal gain and return loss Vs Frequency Vds=28V, Idq=100mA, input power=0dBm

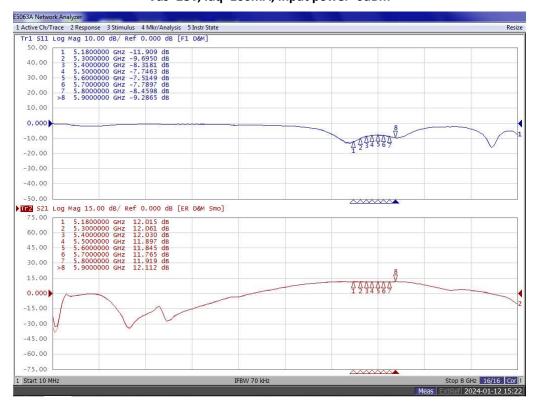
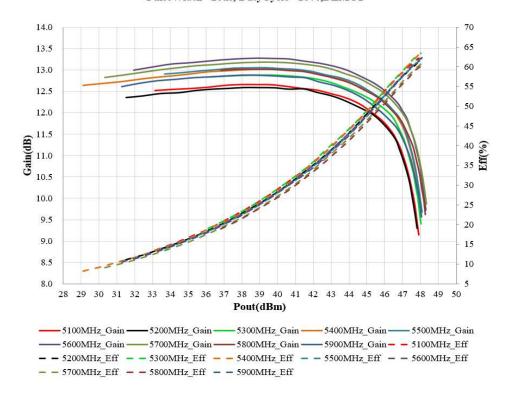
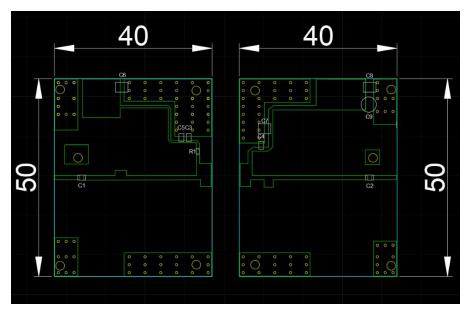



Figure 5: Efficiency and power gain as function of Pout


STAH58051GX Class AB Vds= 28V, Idq=137.5mA PulseWidth= 20us, DutyCycle= 10%,DEMO1

Document Number: STAH58051GX Preliminary Datasheet V1.1

Figure 6: Picture and Bill of materials of 5.1-5.9GHz wide band application circuit (Layout Gerber file upon request, 20mils RO4350B)

Component	Value	Quantity
U1	STAH58051GX	1
C1、C2、C3、C4	3.9pF	4
C6、C7、C8	10uF/63V	3
C5	10uF/16V	1
R1	10 Ω	1
C9	470uF/63V	1

Document Number: STAH58051GX Preliminary Datasheet V1.1

Package Outline

Flanged ceramic package; 2 leads

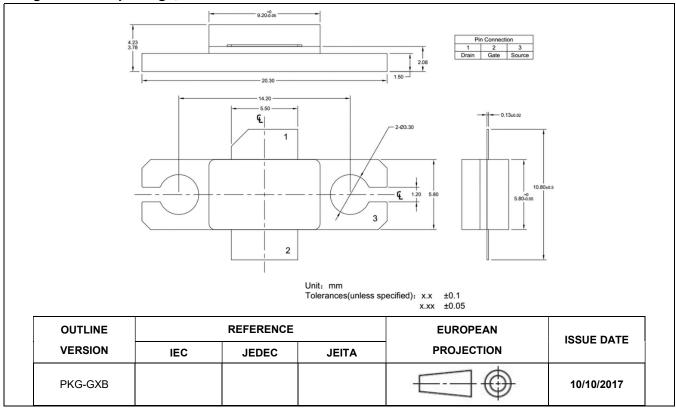


Figure 1. Package Outline PKG-G2E

Document Number: STAH58051GX Preliminary Datasheet V1.1

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2023/9/25	V1.0	Preliminary Datasheet Creation
2024/1/14	V1.1	Add 5.1-5.9GHz data

Application data based on YHG-23-25/ZYX-24-01

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.