Gallium Nitride 50V, 650W, 3.3-3.6GHz RF Power Transistor

Description

The STCV36650CY4V is a 650-watt, internally matched GaN HEMT, designed for 5G cellular applications with frequencies from 3.3-3.6GHz, **enabled by wide band VBW capability to support IBW up to 300MHz.**.

It can be configured as asymmetrical Doherty for 4G or 5G application, delivering 80-100W average power, according to normal 8 to 9dB back off.

There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

• Typical Doherty Pulsed CW and 1C W--CDMA Characterization Performance:

VDD = 50 Vdc, IDQA = 260 mA, VGSB = -6.2Vdc,

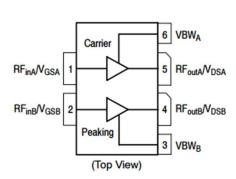
Frog	Pulse CW Signal ⁽¹⁾			P _{avg} =49.5dBm WCDMA Signal ⁽²⁾			
Freq (GHz)	P1-Gain (dB)	P3 (dBm)	P3 (W)	Gp (dB)	η ₀ (%)	ACPR₅м (dBc)	
3.3	12.86	58.60	724	12.07	47.50	-31.01	
3.4	12.65	58.72	745	12.28	46.35	-32.85	
3.5	12.79	58.64	732	12.28	45.16	-35.39	
3.6	12.33	58.38	689	12.12	44.90	-31.69	

1C WCDMA; Signal PAR = 10 dB @ 0.01% Probability on CCDF.

Applications

- Asymmetrical Doherty amplifier within N77/78 5G band
- S band power amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors


Turning the device ON


- 1. Set VGS to the pinch—off (VP) voltage, typically –5 V $\,$
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically –5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Figure 1: Pin Connection definition

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain—Source Voltage	V _{DSS}	+200	Vdc
Gate—Source Voltage	V _{GS}	-8 to +0.5	Vdc
Operating Voltage	V _{DD}	55	Vdc
Maximum gate current	lgs	85	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

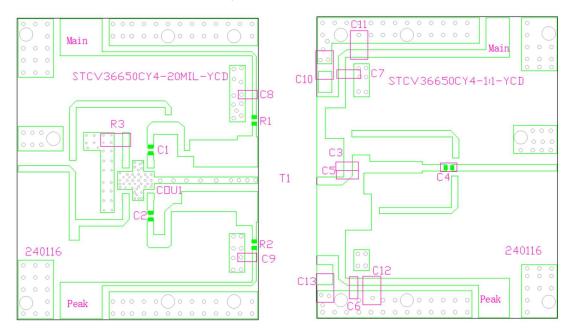
Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Balo	0.8	°C /W
T _c = 85°C, Pout=80W, 3.8GHz Doherty application board	Rejc	0.8	

Table 3. Electrical Characteristics (TA = 25°C unless otherwise noted)

DC Characteristics (main path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=34mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 34mA		-4		-2	V
Gate Quiescent Voltage	VDS =50V, IDS=280mA, Measured in Functional Test	$V_{GS(Q)}$		-3.2		V


DC Characteristics (peak path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=51mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 51mA	V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage	VDS =50V, IDS=420mA Measured in Functional Test	V _{GS(Q)}		-3.2		V

Ruggedness Characteristics

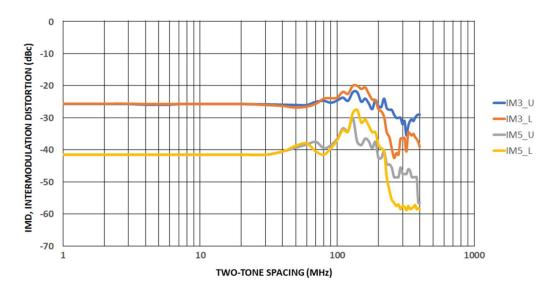

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	3.6GHz, Pout=80W WCDMA 1 Carrier in Doherty circuit All phase, No device damages	VSWR		10:1		

Figure 3: Picture of application board Doherty circuit for 3.3-3.6GHz

Part	Quantity	Description	Part Number	Manufacture
C1,C2,C4,C6,	7	8.2pFHigh Q	251SHS8R2BSE	TEMEX
C7,C8,C9		Capacitor		
C3,C5	2	1.0pFHigh Q	251SHS1R0BSE	TEMEX
		Capacitor		
C10,C11,C12,C13	4	10uF MLCC	RS80R2A106M	MARUWA
R1,R2	2	10 Ω Power Resistor	ESR03EZPF10R0	ROHM
R3	1	51 Ω Power Resistor	RFR50-20CT0421B	YT
COUT1	1	3 dB Bridge	XC3500P-03S	ANAREN
T1	1	650W GaN	STCV36650CY4V	Innogration
		Dual Transistor		

Vdd=50V, Pout=48.5dBm, Center Frequency=3.6GHz

Document Number: STCV36650CY4V Preliminary Datasheet V1.0

Figure 5: Efficiency and power gain as function of Pout

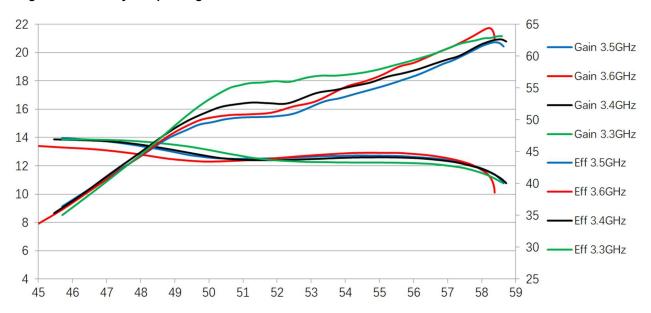
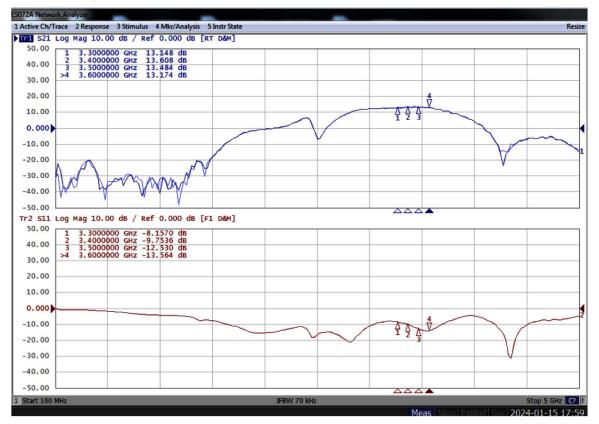
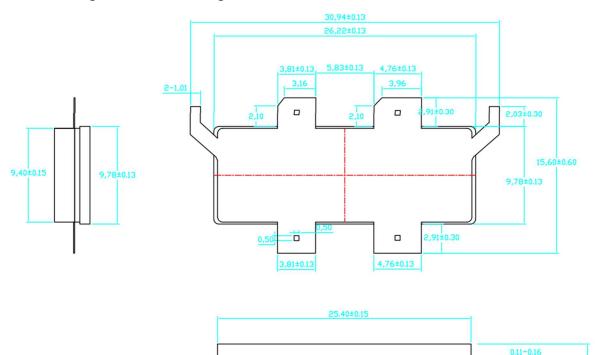




Figure 6: Network analyzer output, S11 and S21

1.54±0.13

Earless Flanged Ceramic Package; 6 leads- CY4V

Table 4. Document revision history

Date	Revision	Datasheet Status
2024/1/17	V1.0	Preliminary Datasheet Creation

Application data based on LWH-24-03

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.