
90W, 50V High Power RF LDMOS FETs

Description

The M2X1509RVP is a 90-watt P1dB minimum, highly rugged, thermally enhanced, unmatched LDMOS FET, designed for wide-band commercial and industrial applications with frequencies HF to 1.5 GHz. It is featured for high power and high ruggedness, suitable for Industrial, Scientific and Medical applications well as FM radio, VHF TV and other ISM applications.

Frequency	P1dB(W)	Psat(W)	Gp @ Psat (dB)	η _□ @Psat (%)
500-1000M	>100	>140	>13	45~60

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection

 V_{DD} = 50 Volts, I_{DQ} = 200 mA, CW.

- Excellent thermal stability, low HCI drift
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- · Pb-free, RoHS-compliant

Suitable Applications

- 2-30MHz (HF or Short wave communication)
- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 118 -140MHz (Avionics)
- 1200-1400MHz(L band)

- 136-174MHz (Commercial ground communication)
- 160-230MHz (TV VHF III)
- 30-512MHz (Jammer, Ground/Air communication)
- 470-860MHz (TV UHF)
- 100kHz 1000MHz (ISM, instrumentation)
- 960-1215MHz(Avionics)

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+110	Vdc
GateSource Voltage	V_{GS}	-10 to +10	Vdc
Operating Voltage	V_{DD}	+55	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit	
Thermal Resistance, Junction to Case	D	0.5	00/14/	
T _C = 85°C, DC Test, Tj=200 °C	Rejc	0.5	°C/W	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

M2X1509RVP

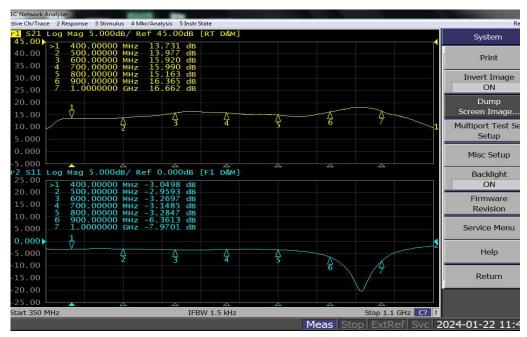

M2X1509RVP LDMOS TRANSISTOR

Table 4. Electrical Characteristics (TA = 25 °C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OC Characteristics					
Drain-Source Voltage	V		110		V
V _{GS} =0, I _{DS} =1.0Ma	$V_{(BR)DSS}$		110		V
Zero Gate Voltage Drain Leakage Current	I _{DSS}			1	μА
$(V_{DS} = 50V, V_{GS} = 0 V)$	IDSS				
Gate—Source Leakage Current				4	^
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}			1	μΑ
Gate Threshold Voltage	V (41-)		2.65		V
$(V_{DS} = 50V, I_D = 600 \mu A)$	V _{GS} (th)		2.00		V
Gate Quiescent Voltage	V		3.57		V
$(V_{DD}$ = 50 V, I_{D} = 200 mA, Measured in Functional Test)	$V_{GS(Q)}$				
Drain source on state resistance	Rds(on)		470		mΩ
(V_{DS} = 0.1V, V_{GS} = 10 V) Each section side of device measured	ixus(on)				11152
Common Source Input Capacitance	C _{ISS}		36		pF
(V _{GS} = 0V, V _{DS} =50 V, f = 1 MHz) Each section side of device					
measured					
Common Source Output Capacitance	Coss		18		pF
(V_{GS} = 0V, V_{DS} =50 V, f = 1 MHz) Each section side of device					
measured					
Common Source Feedback Capacitance	C _{RSS}		1		pF
(V $_{GS}$ = 0V, V $_{DS}$ =50 V, f = 1 MHz) Each section side of device					
measured					

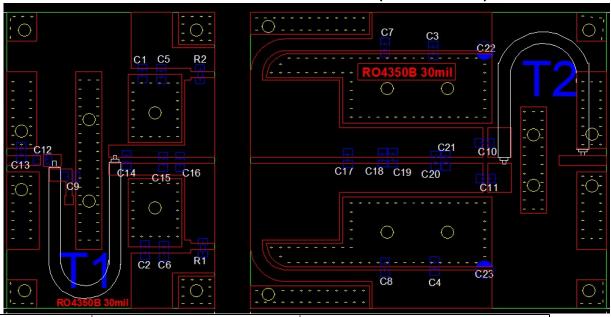
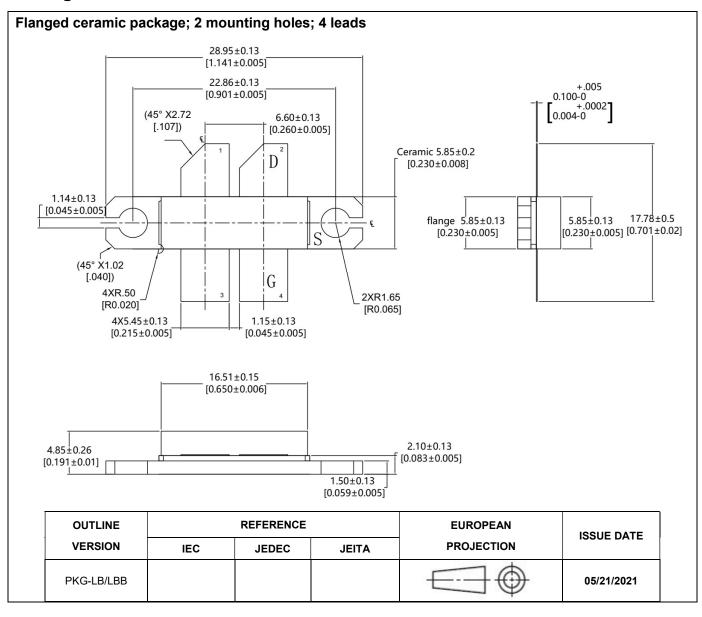

TYPICAL CHARACTERISTICS

Figure 1: Network analyzer output S11/S21 Vds=50V, Idq=200mA, Pin=0dBm

M2X1509RVP LDMOS TRANSISTOR


Reference Circuit of Test Fixture (500-1000MHz)

Component	Description	Suggested Manufacturer	
C1~C4	10uF	10uF/100V	
C5~C9	200pF	MQ101111	
C10,C11	68pF	MQ101111	
C12	82pF	MQ101111	
C13	1pF	MQ101111	
C14, C20	2pF	MQ101111	
C15	12pF	MQ101111	
C16	7.5pF	MQ101111	
C17	3pF	MQ101111	
C18	1.5pF	MQ101111	
C19	0.5pF	MQ101111	
C21	3.6pF	MQ101111	
C22,C23	470uF,63V	Electrolyic Capacitor	
R1	10 Ω		
T1	25 ohm,60 mm	RFSFBU-086-50	
T2	35 ohm,60mm	SFF-35-3	
PCB	30mil Rogers 4350B		

M2X1509RVP LDMOS TRANSISTOR

Package Outline

Document Number: M2X1509RVP Preliminary Datasheet V1.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2024/1/22	Rev 1.0	Preliminary Datasheet Creation

Application based on TC-24-04

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.