Document Number: M2U1505V Preliminary Datasheet V1.0

1500MHz, 55W, 50V High Power RF LDMOS FETs

Description

The M2U1505V is a 55-watt P1dB, highly rugged, unmatched LDMOS FET, designed for wideband commercial and industrial applications at frequencies HF to 1.5 GHz.

It can support pulsed, CW or any modulated signal in form of linear or saturated operations.

M2U1505V

•Typical Performance (On Innogration 2 kinds of narrow band fixtures with device soldered):

V_{ds} = 50V, V_{gs} =3V, I_{dq} =10mA						
Freq(MHz)	Test signal	P-1(dBm)	P-1Gain(dB)	P-3(dBm)	P-3(W)	Eff(%)
915	Pulsed	49.19	22.0	49.66	92.5	65
915	cw	48.74	21.7	49.17	82.7	62
1030-1090	Pulsed	48.90	18.7	49.64	92.1	59

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- · Excellent thermal stability, low HCI drift

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- · Pb-free, RoHS-compliant

Suitable Applications

- 2-30MHz (HF or Short wave communication)
- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 118 -140MHz (Avionics)
- L band (1200-1400MHz)

- 136-174MHz (Commercial ground communication)
- 160-230MHz (TV VHF III)
- 30-512MHz (Jammer, Ground/Air communication)
- 470-860MHz (TV UHF)
- 100kHz 1000MHz (ISM, instrumentation)
- Avionics (960-1215MHz)

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	110	Vdc
GateSource Voltage	V _{GS}	-10 to +10	Vdc
Operating Voltage	V_{DD}	+55	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Do 10	1.6	°C/W
T _C = 85°C, T _J =200°C, DC test	Rejc	1.0	°C/VV

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

Table 4. Electrical Characteristics (TA = 25 ℃ unless otherwise noted)

Output Power

Drain Efficiency@Pout

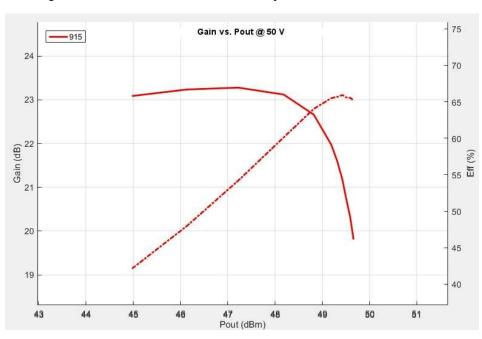
Input Return Loss

Characteristic	Symbol	Min	Тур	Max	Unit
OC Characteristics					
Drain-Source Voltage			110		V
V _{GS} =0, I _{DS} =1.0mA	V _{(BR)DSS}		110		V
Zero Gate Voltage Drain Leakage Current				1	
$(V_{DS} = 50V, V_{GS} = 0 V)$	I _{DSS}		<u>——</u>	ļ	μΑ
GateSource Leakage Current					^
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}		<u>——</u>	1	μΑ
Gate Threshold Voltage	V m		0.70		V
$(V_{DS} = 50V, I_D = 600 \mu A)$	V _{GS} (th)		2.73		V
Gate Quiescent Voltage	V		3		V
$(V_{DD}$ = 50 V, I_D = 10 mA, Measured in Functional Test)	$V_{GS(Q)}$		3		V
Common Source Input Capacitance	C _{ISS}		50		pF
$(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$					
Common Source Output Capacitance	C _{oss}		20		pF
$(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$					
Common Source Feedback Capacitance	C _{RSS}		0.6		pF
$(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$					
Functional Tests (In Demo Test Fixture, 50 ohm system) V_{DD} =	50 Vdc, I _{DQ} = 10mA, f =	915 MHz, CW	Signal Measu	rements, Pin=	26dBm
Power Gain@Pout	Gp		22		dB

TYPICAL CHARACTERISTICS

Pout

η₀ IRL 55

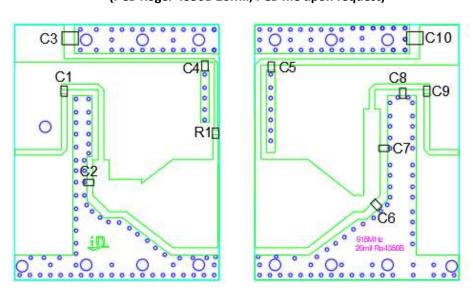

60

-5

%

dΒ

Figure 1: Pulsed CW Gain and Power Efficiency as a Function of Pout at 915MHz



-50.00

Tr1 511 Log Mag 10.00 dB / Ref 0.000 dB [F1 D&M] >1 915.00000 MHz -5.8813 dB 40.00 20.00 10.00 0.000 -10.00 -20.00 -30.00 -40.00 -50.00 50.00 1 015 00000 HUZ 20 107 10 915.00000 MHz 20.107 dB 40.00 30.00 20.00 10.00 -10.00 -20.00 -30.00 -40.00

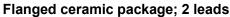

Figure 2: Network analyzer output S11/S21

Figure 3. Test Circuit Component Layout (PCB Roger 4350B 20Mil, PCB file upon request)

Component	Value	Description
C1,C4,C5,C9	22pF	ATC600S
C2,C6	12pF	ATC600S
C3,C10	10uF	TDK1206
C7	6.8pF	ATC600S
C8	3.0pF	ATC600S
C8	1.5pF	ATC600S
R1	10 Ω	1

Package Outline

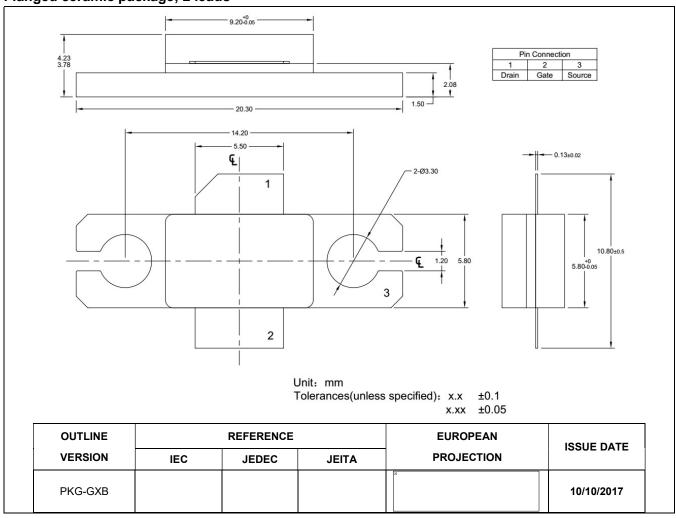


Figure 1. Package Outline PKG-G2E

Document Number: M2U1505V Preliminary Datasheet V1.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2024/2/23	V1.0	Preliminary Datasheet Creation

Application data based on HJ-24-02/03

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.