Document Number: SMBV3338-201 Preliminary Datasheet V1.0

3.3-3.8GHz, 200W, 50V GaN matched PA Module

Description

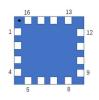
The SMBV3338-201 is a 200-watt, integrated 2-stage Power Amplifier Module, designed for 5G massive MIMO applications, with frequencies from 3.3 to 3.8 GHz. The module is 50 Ω input fully matched and output partially matched, and requires minimal external components. The module offers a much smaller footprint than traditional discrete component solutions, with much less sensitivity for production, housed in 12*10mm cost effective plastic open cavity package, and heat dissipated by copper flange.

The module incorporates advanced Doherty circuit delivering high power added efficiency for the entire module at 28W average power according to normal 8.5 dB back off.

Innogration owns the patents for internal Doherty architecture, and related plastic open cavity.

• Typical Performance of 3.3-3.8G Full band Doherty (On Innogration fixture with device soldered on copper coin directly):

	•	-	-	•	•	
Frog	Pulse CW Signal(1)			Pavg=44.5dBm WCDMA Signal(2)		
Freq (GHz)	P1-Gain	P5	P5	Gp	Eff	ACPR5M
(GHZ)	(dB)	(dBm)	(W)	(dB)	(%)	(dBc)
3.30	28.93	52.99	199	28.23	43.34	-27.65
3.40	29.62	53.25	211	29.55	41.17	-33.68
3.50	29.59	53.39	218	29.52	40.72	-34.32
3.60	29.51	53.50	224	29.34	41.76	-31.48
3.70	29.16	53.41	219	28.64	42.12	-29.94
3.80	28.78	52.97	198	28.09	41.43	-29.18


VDS=48V, Idq-main=135mA Vgs-main=-3.1V. Vgs-peak=-5.3V, Idq-driver=45mA, Vgs-Driver=-3.14V

Notes: (1)Pulse Width=20 us, Duty cycle=10% (2)WCDMA signal: 3GPP test model 1; 1 to 64 DPCH; Channel Bandwidth=3.84MHz,PAR =10.5 dB at 0.01 % probability on CCDF.

Features and Benefits

- Adjustable drain bias to fit different power demand
- Excellent VBW performance to enable the broadest IBW/OBW
- ✓ Industry leading RF performance for 5G MIMO AAU, for instance: 32T:640W / 400MHz
- Plastic open cavity without molding compound brings advantage compared to molded design
- ✓ Minimize the risk of high density thermal distribution in fanless system for longer life time
- ✓ Highly consistent RF performance for yield of volume production
- + 50 Ω Input matched, output partially matched, total effective PCB space smaller than 25*35mm
- Integrated Doherty Final and driver Stage
- 12*10 mm Surface Mount Package, full copper flange underneath for grounding and heat dissipation, much more effective than LGA PCB based design

Pin Configuration and Description (Top view)

Document Number: SMBV3338-201 Preliminary Datasheet V1.0

Pin No.	Symbol	Description		
3 RF IN		RF Input		
1	Vds-driver	Driver stage, Drain Bias		
2	Vgs-driver	Driver stage, Gate Bias		
9,10	RF Out2/Vds-Main	RF Output, Drain Bias of Main Amplifier		
11,12	RF Out1/Vds-Peak	RF Output, Drain Bias of Peaking Amplifier		
6	Vgs-main	Main Amplifier, Gate Bias		
13	VBE-peak	VBW enhancement for Peak		
15	Vgs-peak	Peaking Amplifier, Gate Bias		
8 VBE-m		VBW enhancement for Main		
4,5,7,14,16	NC	No connection		
		DC/RF Ground. Must be soldered to EVB ground plane over array of		
Daakaga Baaa	GND	vias for thermal and RF performance. Solder voids under Pkg Base		
Package Base	UND	will result in excessive junction temperatures causing permanent		
		damage.		

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	200	Vdc
GateSource Voltage	V _{GS}	-8 to +0.6	Vdc
Operating Voltage	Vdd	+60	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance@Average Power, Junction to Case	Palo	1.06	0000
Tcase=+85℃,CW Test,Pout=25W,	Rejc	1.06	°C/W

Notes:

The thermal resistance is acquired by our company's FEA model, which was calibrated by IR measurement, the value shall be applied to (1) reliability.

The reference Tcase temperature $85\,^\circ\!\!\mathbb{C}$ is apply on the backside of package. (2)

(3) (4)

It is recommended to use copper coin underneath to maximize the heat dissipation. The power dissipation in the table is overall dissipation which includes Carrier PA, Peaking PA and driver PA...

Table 3. ESD Protection Characteristics

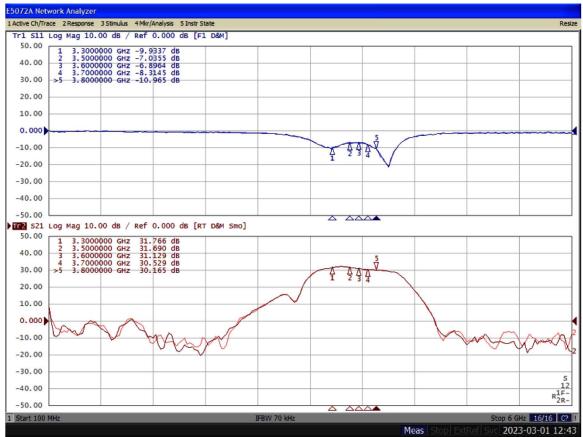
Test Methodology	Class Voltage
Human Body Model(HBM) (JEDEC Standard JESD-A114)	±200V
Charged Device Model (CDM) (JEDEC Standard JESD22-C101F)	$\pm 1000V$

Table 4. Electrical Characteristics

Parameter	Condition	Min	Тур	Max	Unit
Frequency Range		3.3		3.8	GHz
Driver Quiescent Current (IDQ-driver)			45		mA
Carrier Quiescent Current (I _{DQ-main})			135		mA
Peak PA Gate Quiescent Voltage (V _{PEAK})			-5.3		V
Power Gain @ Pout=44.5dBm	Freq=3.6GHz		29		dB

Document Number: SMBV3338-201 Preliminary Datasheet V1.0

Efficiency @Pout=44.5dBm	Freq=3.6GHz		40		%
Ppeak by CCDF	Freq=3.6GHz		200		W
Load Mismatch of per Section (On Test Fixture, 50 ohm system): f = 3.6GHz					


VSWR 10:1 at P3dB pulse CW Output Power

No Device Degradation

TYPICAL CHARACTERISTICS

Figure 2. Network analyzer output S11/S21

Document Number: SMBV3338-201 Preliminary Datasheet V1.0

Figure 3: Picture of application board Doherty circuit for 3.4-3.8GHz

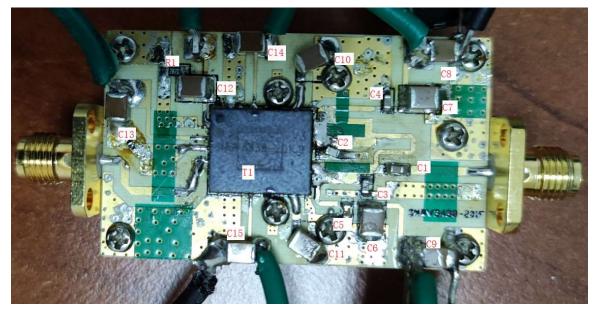
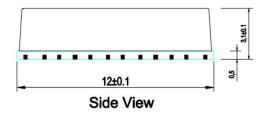
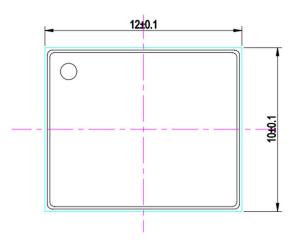
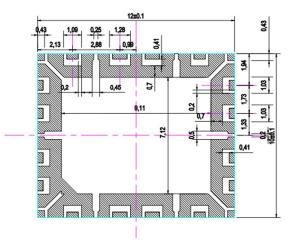



Table 4. Bill of materials of application board (PCB layout upon request, RO4350B 20mils)

Test Board Bom						
Part	Quantity	Description	Part Number	Manufacture		
C1,C4,C5	3	8.2pFHigh Q	251SHS8R2BSE	TEMEX		
		Capacitor				
C2	1	0.6pFHigh Q	251SHSOR6BSE	TEMEX		
		Capacitor				
C3	1	0.4pFHigh Q	251SHSOR4BSE	TEMEX		
		Capacitor				
C6,C7,C8,C9,C10,C11,C12,C1	7	10uF MLCC	RS80R2A106M	MARUWA		
3,C14,C15						
R1	1	2.7 Ω Power	ESR03EZPF2R70	ROHM		
		Resistor				
T1	1	200W MCM	SMBV3338-201	Innogration		


Package Dimensions


PKG:C9(QFN12*10)

Notes:

- 1. All dimensions are in mm;
- 2. The tolerances unless specified are 0.1mm.

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2023/3/14	Rev 1.0	Preliminary Datasheet

Application data based on LWH-23-06

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.