320W, 0.7GHz 50V High Power RF LDMOS FETs

Description

The M2K1032RVS is a 320watt capable, high performance, thermally enhanced, unmatched, single ended LDMOS FET, used for any frequency up to 0.7GHz,capable of delivery either CW or pulsed signal.

It is featured with high breakdown voltage and stability, and leading RF performance.

Typical performance(on 500MHz narrow band application board with devices soldered)

1 16	,		11						
	M2K1032RVS Vgs=3.16V Vds=50V								
Freq(MHz)	Pout(dBm)	Pout(W)	IDS(A)	Pin(dBm)	Gain(dB)	Eff(%)	2th(dBc)	3th(dBc)	
500	55.45	350.75	9.4	38.5	16.95	74.63	-20.5	-55.2	
500	55.3	338.84	9.2	37.5	17.8	73.66	1	1	
500	55.1	323.59	8.76	36.5	18.6	73.88	/	1	
500	54.9	309.03	8.51	35.5	19.4	72.63	/	1	
500	54.51	282.49	8.1	34.5	20.01	69.75	/	/	
500	54.2	263.03	7.67	33.5	20.7	68.59	/	1	
500	53.81	240.44	7.22	32.5	21.31	66.60	/	1	
500	53.3	213.80	6.68	31.5	21.8	64.01	1	1	
500	52.6	181.97	6.09	30.5	22.1	59.76	/	/	

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift

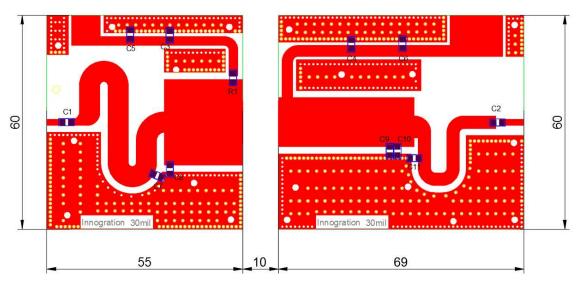
Suitable Applications

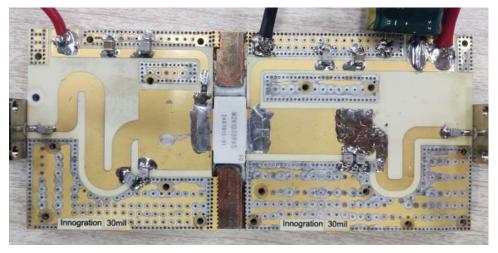
- Laser Exciter
- Synchrotron
- MRI
- Plasma generator
- Weather Radar

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit				
DrainSource Voltage	V _{DSS}	115	Vdc				
GateSource Voltage	V _{GS}	-10 to +10	Vdc				
Operating Voltage	V _{DD}	+55	Vdc				
Storage Temperature Range	Tstg	-65 to +150	°C				
Case Operating Temperature	Tc	+150	°C				
Operating Junction Temperature	TJ	+225	°C				

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant


Document Number: M2K1032RVS Preliminary Datasheet V1.1


Characteristic		Symbol	Value		Unit	
Thermal Resistance, Junction to Case ,Case Temperature 85°C, 320W	V CW,	54			°C/W	
50 Vdc, Idq = 200 mA		Rth	0.21			
Table 3. ESD Protection Characteristics	•					
Test Methodology			Class			
Human Body Model (per JESD22A114)			Class 2			
Table 4. Electrical Characteristics (T _A = 25 $^{\circ}$ C unless otherwise r	noted)					
Characteristic	Symbol	Min	Тур	Max	Unit	
OC Characteristics	•		•			
Drain-Source Voltage			445			
V _{GS} =0V, I _{DS} =1.0mA	V _{(BR)DSS}		115		V	
Zero Gate Voltage Drain Leakage Current				1	μA	
(V _{DS} = 50V, V _{GS} = 0 V)	DSS			1		
Gate—Source Leakage Current				1	•	
(V _{GS} = 10 V, V _{DS} = 0 V)	I _{GSS}			Ι	μA	
Gate Threshold Voltage	V _{GS} (th)		2.54		v	
$(V_{DS} = 50V, I_D = 600 \ \mu A)$	V _{GS} (UI)		2.04			
Gate Quiescent Voltage	V _{GS(Q)}		3.16		V	
(V_{DD} = 50 V, I_D = 200 mA, Measured in Functional Test)	V GS(Q)		5.10			
Drain source on state resistance	Rds(on)		70		mΩ	
(V_{DS} = 0.1V, V_{GS} = 10 V) Each section side of device measured			10		11152	
Common Source Input Capacitance	CISS		170		pF	
(V_{GS} = 0V, V_{DS} =50 V, f = 1 MHz) Each section side of device						
measured						
Common Source Output Capacitance	Coss		70		pF	
(V_{GS} = 0V, V_{DS} =50 V, f = 1 MHz) Each section side of device						
measured						
Common Source Feedback Capacitance	C _{RSS}		2		pF	
(V_{GS} = 0V, V_{DS} =50 V, f = 1 MHz) Each section side of device						
measured						

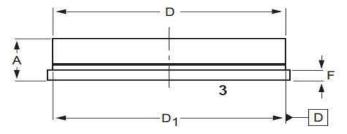
cycle:10%

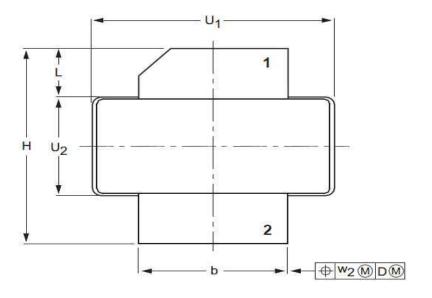
10:1 at 320W Pulsed CW Output Power No Device Degradation

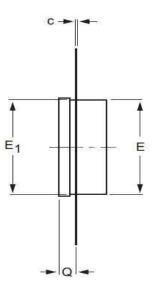
Reference Circuit of Test Fixture (500MHz CW Power Amplifier)



Table 5. Test Circuit Component Designations and Values


Part	Description	Model
C1~C4	820pF MQ101111	
C5,C6	10uF	Ceramic multilayer capacitor
C7	22pF MQ301111	
C8	20pF MQ301111	
C9,C10	4.7pF MQ301111	
C11	18pF MQ301111	
R1	10 Ω 1206	Chip Resistor


Figure 1: Network analyzer output S11/S21, Vds=50V, Idq=200mA



Package Outline

Earless flanged ceramic package; 2 leads (1—DRAIN、2—GATE、3—SOURCE)

0			5				10 mm			
Ľ	10	15	10	\mathbf{E}	1	12	\mathbf{E}	12	12	1
				SC	a	le				

UNIT	A	b	с	D	D1	E	E1	F	н	L	Q	U1	U2	W ₂
mm	4.72	12.83	0.15	20.02	19.96	9.50	9.53	1.14	19.94	5.33	1.70	20.70	9.91	0.05
	3.43	12.57	0.08	19.61	19.66	9.30	9.25	0.89	18.92	4.32	1.45	20.45	9.65	0.25
inches	0.186	0.505	0.006	0.788	0.786	0.374	0.375	0.045	0.785	0.210	0.067	0.815	0.390	0.010
	0.135	0.495	0.003	0.772	0.774	0.366	0.364	0.035	0.745	0.170	0.057	0.805	0.380	0.010

OUTLINE		REFERENCE	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
PKG-B2				$\bigcirc \bigcirc$	03/12/2013

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2024/3/18	Rev 1.0	Preliminary datasheet

Application data based on HL-24-10

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.