2900MHz, 350W, 32V High Power RF LDMOS FETs

Description

The ITCH29350C2 is a 350-watt, internally matched LDMOS FETs, designed for multiple applications with frequencies at 2900MHz for ISM and RF Energy applications

•Typical Performance in 2.8/2.9G application boards with devices soldered

V_{DS}=32V,I_{DQ}=500mA, Pulsed CW 10% 25us

Freq	P1dB	P1dB	P1dB Eff	P1dB Gain	P3dB	P3dB	P3dB Eff
(MHz)	(dBm)	(W)	%	dB	(dBm)	(W)	%
2900	55.28	337.62	43	10	56.0	400	45

Freq	P1dB	P1dB	P1dB Eff	P1dB Gain	P3dB	P3dB	P3dB Eff
(MHz)	(dBm)	(W)	%	dB	(dBm)	(W)	%
2800	55.06	320.55	42	9.9	55.94	392.37	45

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Internally Matched for Ease of Use
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Excellent thermal stability, low HCI drift
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	70	Vdc
GateSource Voltage	V _{GS}	-10 to +10	Vdc
Operating Voltage	Vdd	+32	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

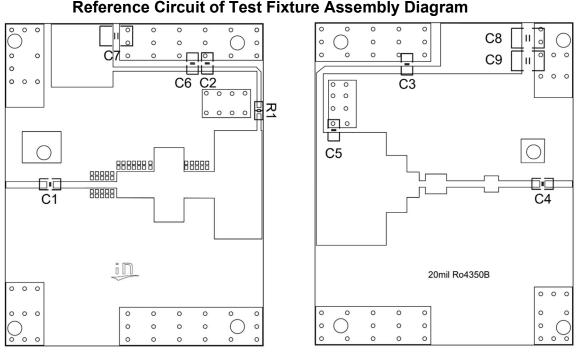
Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit	
Thermal Resistance, Junction to Case	Rejc	0.1	0000	
Case Temperature 80°C, 350W Pulsed Output	KAJC	0.1	°C/W	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

 Table 4. Electrical Characteristics (TA = 25 C unless otherwise noted)



Document Number: ITCH29350C2 Preliminary Datasheet V1.0

Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics					
Drain-Source Breakdown Voltage	N	65	70		v
(V _{GS} =0V; I _D =100uA)	V _{DSS}				
Zero Gate Voltage Drain Leakage Current				10	
$(V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V})$	DSS			10	μΑ
GateSource Leakage Current				1	^
$(V_{GS} = 6 V, V_{DS} = 0 V)$	I _{GSS}			I	μΑ
Gate Threshold Voltage	V _{GS} (th)		1.9		V
$(V_{DS} = 28V, I_{D} = 600 \text{ uA})$	V GS(UT)		1.9		v
Gate Quiescent Voltage	V _{GS(Q)}		3	3.5	V
(V_{DS} = 28 V, I_{DQ} = 500 mA, Measured in Functional Test)	V GS(Q)		3	3.5	V

Functional Tests (In Innogration Test Fixture, 50 ohm system) : $V_{DS} = 32$ Vdc, $I_{DQ} = 500$ mA, f = 2900 MHz, Pulse CW Signal Measurements. (Pulse Width=20 μ s, Duty cycle=10%)

Power Gain @ P _{3dB}	Gp	8	9		dB
Drain Efficiency@P3dB		43	45		%
3dB Compression Point	P _{-3dB}	350	400		W
Input Return Loss	IRL		-7		dB
Load Mismatch of per Section (On Test Fixture, 50 ohm system): V _{DD} = 32 Vdc, I _{DQ} = 500 mA, f = 2900 MHz					
VSWR 5:1 at 350W pulse CW Output Power	No Device D	egradation			

2900MHz Reference Circuit of Test Fixture Assembly Diagram

Figure 1. Test Circuit Component Layout (2900MHz)

 control component Designations and Values						
Reference	Footprint	Value	Quantity			
C1, C2, C3, C4,	0805	15pF/250V	4			
C5	0805	0.5pF/250V	1			
C6	0805	1uF/50V	1			
C7, C8, C9	1210	10uF/100V	3			
R1	0603	10R	1			
U1	C6	ITCH29350C2	1			

Table 1. Test Circuit Component Designations and Values

TYPICAL CHARACTERISTICS

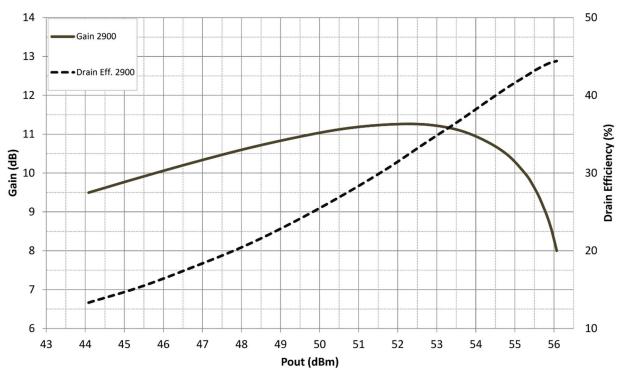


Figure 2. Power Gain and Drain Efficiency as Function of Pulsed CW Output Power

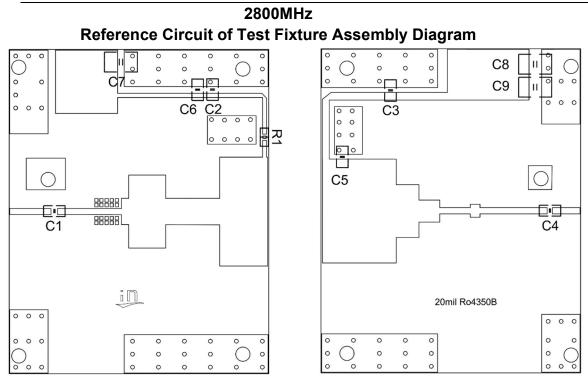
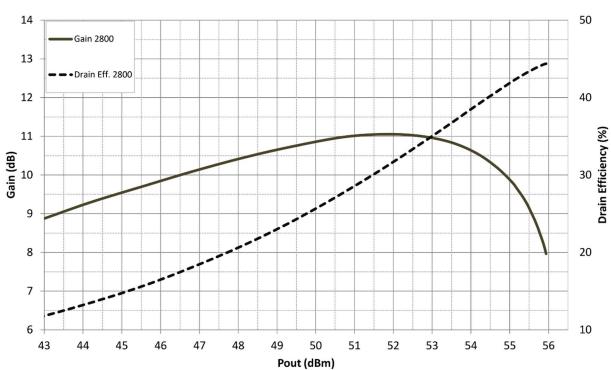
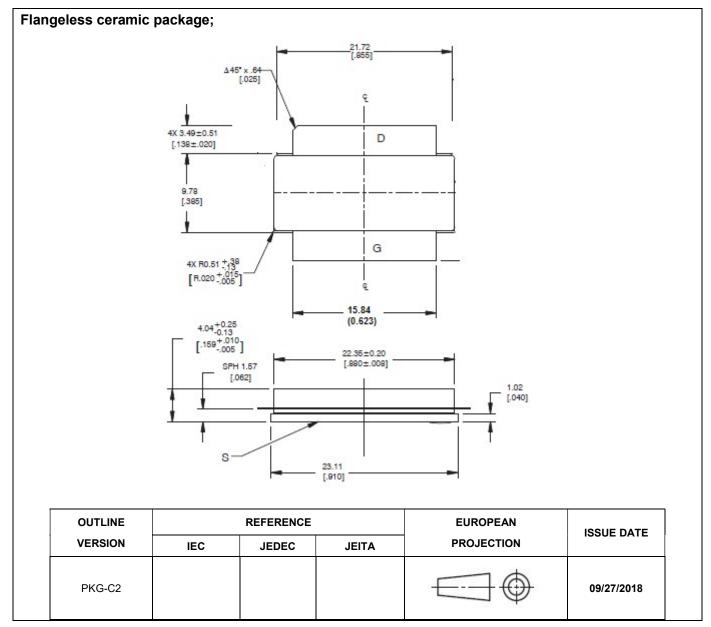



Figure 3. Test Circuit Component Layout (2800MHz)

Reference	Footprint	Value	Quantity
C1, C2, C3, C4,	0805	15pF/250V	4
C5	0805	0.5pF/250V	1
C6	0805	1uF/50V	1
C7, C8, C9	1210	10uF/100V	3
R1	0603	10R	1
U1	C2	ITCH29350C2	1



TYPICAL CHARACTERISTICS

Figure 3. Power Gain and Drain Efficiency as Function of Pulsed CW Output Power

Document Number: ITCH29350C2 Preliminary Datasheet V1.0

Package Outline

Revision history

Table 6. Document revision history

Date	Revision	Datasheet Status
2024/3/22	V1.0	Preliminary Datasheet Creation

Application data based on ZBB-24-08/10

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.