Document Number: STAV38080C6 Preliminary Datasheet V1.2

Gallium Nitride 50V, 80W, 0.1-3.8GHz RF Power Transistor

Description

The STAV38080C6 is a 80watt, GaN HEMT, ideal for general applications from 0.1 to 3.8GHz. It features high gain, wide band and low cost, in 10*6mm plastic open cavity package, enabling surface mounted on PCB through grounding vias or soldered on heatsink directly.

There is no guarantee of performance when this part is used outside of stated frequencies.

• Typical Class AB pulse CW performance across 3.3-3.6GHz/3.4-3.8GHz:

Pulse width=50us, duty cycle=20% (On innogration wideband application board with device soldered)

STAV38080C6

	V_{DS} = 50V, I_{DQ} =120mA, V_{GS} =-3.26V							
FREQ (MHZ)	P1dB (dBm)	P1dB (W)	P1dB Eff (%)	P1dB Gain (dB)	P3dB (dBm)	P3dB (W)	P3dB Eff (%)	
3300	48.79	75.60	52.57	17.05	50.11	102.5	56.50	
3400	48.93	78.20	56.22	16.70	49.99	99.70	59.33	
3500	48.33	68.01	55.96	16.66	49.58	90.84	59.67	
3600	47.95	62.30	55.25	16.63	49.17	82.68	58.59	

$V_{DS} = 50V$, $I_{DQ} = 120 \text{mA}$, $V_{GS} = -3.26V$							
FREQ (MHZ)	P1dB	P1dB	P1dB Eff	P1dB Gain	P3dB	P3dB	P3dB Eff
	(dBm)	(W)	(%)	(dB)	(dBm)	(W)	(%)
3400	48.69	73.90	50.73	16.19	50.02	100.57	55.55
3500	48.50	70.81	52.50	16.75	50.01	100.20	58.09
3600	48.41	69.29	54.50	16.93	49.79	95.21	58.52
3700	48.16	65.40	54.89	16.76	49.35	86.18	56.81
3800	47.53	56.68	51.73	16.18	49.23	83.75	57.67

Other application result upon request: 1.8-2.2, 2.3-2.7GHz etc

Applications

- 5G, 4G wireless infrastructure
- Wideband or narrowband power amplifier
- · Test instruments
- Jammer

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Document Number: STAV38080C6 Preliminary Datasheet V1.2

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V _{GS}	-8 to +0.5	Vdc
Operating Voltage	V _{DD}	55	Vdc
Maximum gate current	Igs	10	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _C	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Rejc	2.0	°C /W
T _C = 85°C, at Pavg=5W WCDMA 1 carrier	I K⊕JC	2.9	-0 /00

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics (measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=10mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 10mA	$V_{GS(th)}$	-4	-3	-2	V
Gate Quiescent Voltage	VDS =50V, IDS=100mA, Measured in Functional Test	$V_{GS(Q)}$		-3.2		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	3.8GHz, Pout=80W pulse CW					
	All phase,	VSWR		10:1		
	No device damages					

Figure 1:Pin Definition(Top View)

Pin No.	Symbol	Description
8,9,10,11,14,15,16,17	Vgs/RF In	Vgs and RF input
26,27,28,29,32,33,34,35	Vds/RF out	Vds and RF output
2,5,7,12,13,18,20,23,25,30,31,36	GND	DC/RF Ground
Others	NC	No connection
Package Base	GND	DC/RF Ground.

Document Number: STAV38080C6 Preliminary Datasheet V1.2

3.3-3.6GHz

Figure 2: Efficiency and power gain as function of Pout (Measured on 3.3-3.6GHz application board)

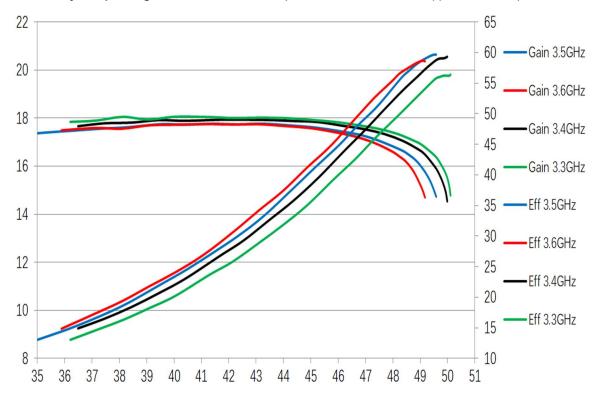


Figure 3: Network plot for S11/S21

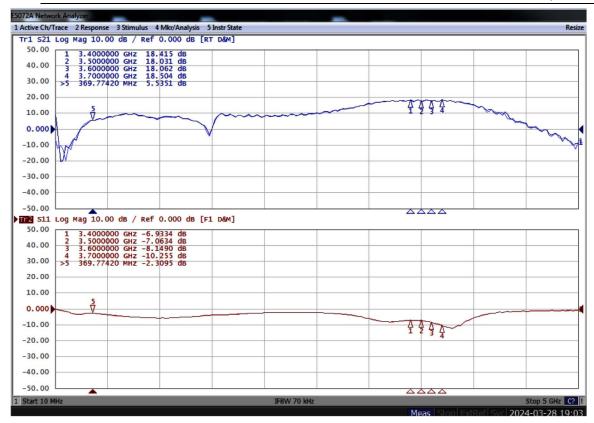


Figure 4: Picture of application board of 3.3-3.6GHz

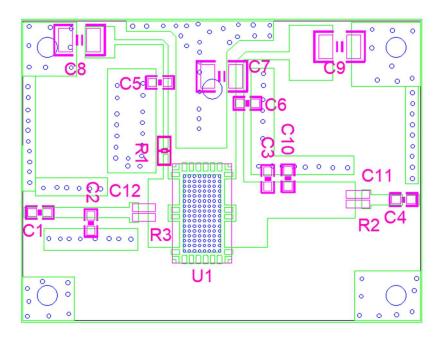


Table 4. Bill of materials of application board (PCB layout upon request)

Part	Quantity	Description	Part Number	Manufacture
C1,C4,C5,C6	4	8.2pFHigh Q	251SHS8R2BSE	TEMEX
		Capacitor		
C2	1	0.7pFHigh Q	251SHSOR7BSE	TEMEX

Document Number: STAV38080C6 Preliminary Datasheet V1.2

		Capacitor		
C3	1	0.5pFHigh Q	251SHS0R5BSE	TEMEX
		Capacitor		
C10	1	0.2pFHigh Q	251SHS0R2BSE	TEMEX
		Capacitor		
C11,C12	2	3.9pFHigh Q	251SHS3R9BSE	TEMEX
		Capacitor		
C7,C8,C9	3	10uF MLCC	GRM32EC72A106M	Murata
			E05	
R1	1	10 Ω Power	ESR03EZPF100	ROHM
		Resistor		
R2,R3	2	51 Ω Power	0805	ROHM
		Resistor		
U1	1	80W GaN	STAV38080C6	Innogration
		Transistor		

3.4-3.8GHz

Figure 5: Efficiency and power gain as function of Pout (Measured on 3.3-3.6GHz application board)

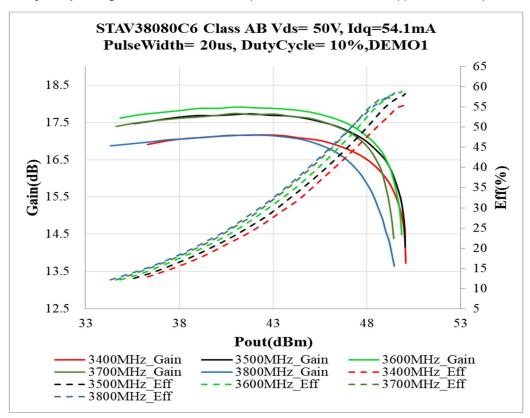


Figure 6: Network plot for S11/S21

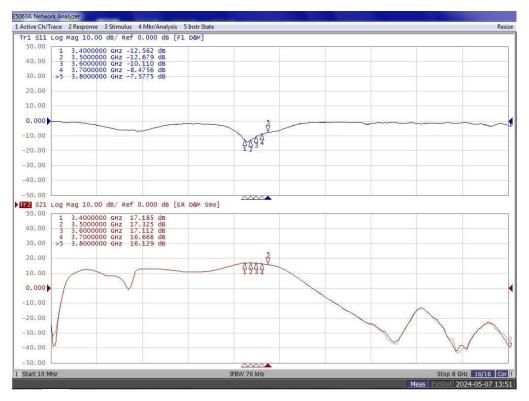
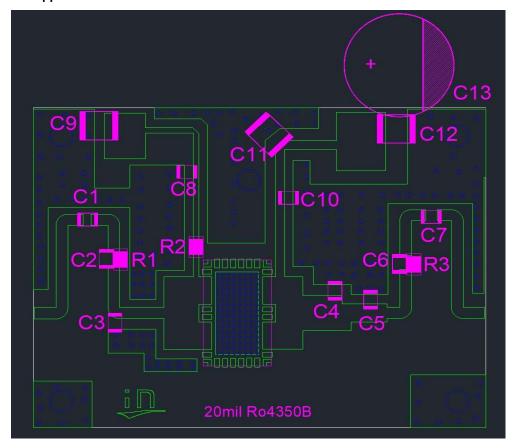



Figure 7: Picture of application board of 3.4-3.8GHz

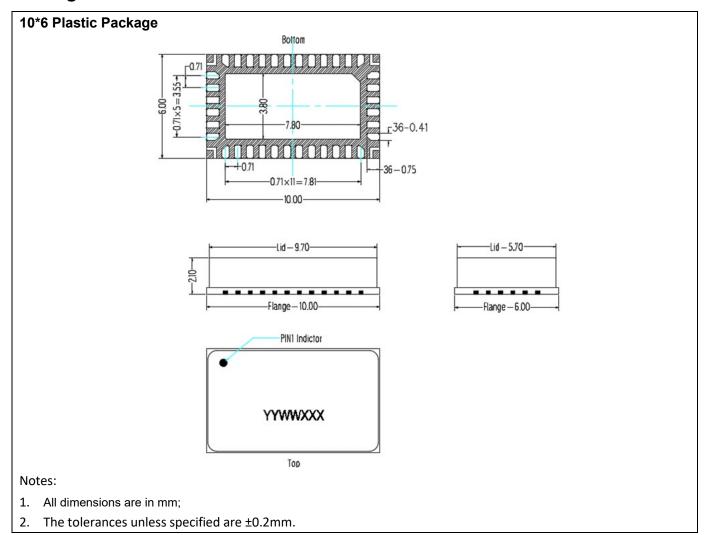

Document Number: STAV38080C6 Preliminary Datasheet V1.2

Table 5. Bill of materials of application board (PCB layout upon request)

Component	Value	Quantity
U1	STAV38080C6	1
C1	3.3pF	1
C2、C6、C7、C8、C10	8.2pF	5
C3	0.8pF	1
C4	0.6pF	1
C5	0.5pF	1
C9、C11、C12	10uF	3
C13	470uF/63V	1
R1、R2、R3	10 Ω	3

Document Number: STAV38080C6 Preliminary Datasheet V1.2

Package Dimensions

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2024/3/29	V1.0	Preliminary Datasheet Creation from STBV38081C6 ,due to thermal optimization
2024/4/11	V1.1	Add 3.4-3.8GHz application data
2024/5/11	V1.2	Modify 3.4-3.8G Application data by RC network to decrease LF gain

Application data based on: HJ-21-07/Light-21-43/ZYX-24-03/LWH-24-11/ZYX-24-31/CWZ-24-7

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.