Gallium Nitride 50V, 100W, 0.1-4.2GHz RF Power Transistor

Description

The STBV38100E2 is a 100watt, GaN HEMT, ideal for general applications from 0.1 to 4.2GHz. It can support CW, pulse or any modulated signal.

It features high gain, wide band and low cost, in 6.5*6.5mm ceramic package with copper flange. Its gullwing leads enable surface mounted on PCB through grounding vias or soldered on heatsink There is no guarantee of performance when this part is used outside of stated frequencies.

• Typical Class AB pulse CW performance across 3.7-4GHz:

Pulse width=50us, duty cycle=20% (On innogration wideband application board with device soldered)

Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
3700.00	49.96	99.11	55.40	15.11	51.05	127.29	58.84
3800.00	49.69	93.20	56.40	15.38	50.89	122.70	60.62
3900.00	49.31	85.31	54.89	15.15	50.80	120.12	60.35
4000.00	48.54	71.37	50.83	14.60	50.36	108.67	57.99

• Typical Class AB pulse CW performance across 3.4-3.8GHz:

Pulse width=50us, duty cycle=20% (On innogration wideband application board with device soldered)

Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
3400	50.30	107.10	53.51	14.35	51.21	132.00	56.06
3500	49.52	89.47	54.60	15.25	50.99	125.47	59.52
3600	49.46	88.36	57.87	15.20	50.56	113.82	61.45
3700	48.65	73.20	55.73	15.26	50.32	107.59	61.27
3800	48.58	72.13	55.26	14.69	50.04	100.95	59.62

Applications

- 5G, 4G wireless infrastructure
- S band power amplifier
- Test instruments
- Jammer

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically –5 V $\,$
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V _{GS}	-8 to +0.5	Vdc

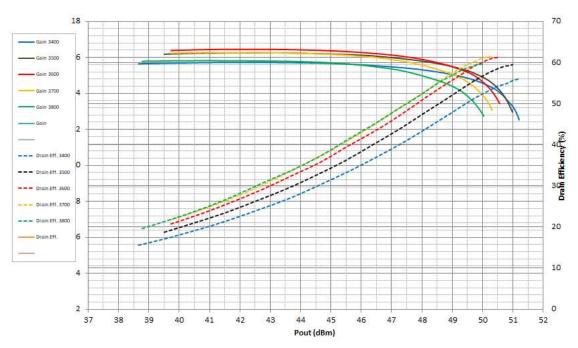
Document Number: STBV38100E2 Preliminary Datasheet V1.0

Operating Voltage	V _{DD}	55	Vdc	
Maximum gate current	lgs	12	mA	
Storage Temperature Range	Tstg	-65 to +150	°C	
Case Operating Temperature	Tc	+150	°C	
Operating Junction Temperature	TJ	+225	°C	
Table 2. Thermal Characteristics	-			
Characteristic	Symbol	Value	Unit	
Thermal Resistance, Junction to Case by FEA	Data	2.4	00 000	
T_c = 85°C, at Pavg=8W WCDMA 1 carrier	Rejc	2.4	°C /W	

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics (measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=12mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 12mA	V _{GS(th)}	-4	-3	-2	V
Gate Quiescent Voltage	VDS =50V, IDS=120mA, Measured in Functional Test	V _{GS(Q)}		-3.04		V


Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	3.8GHz, Pout=100W pulse CW					
	All phase,	VSWR		10:1		
	No device damages					

3.4-3.8GHz

Figure 1: Efficiency and power gain as function of Pout (Measured on 3.4-3.8GHz application board)

VDD = 50 Vdc, IDQ = 150 mA, Pulse width=20us, duty cycle=20%

Figure 2: Network plot for S11/S21

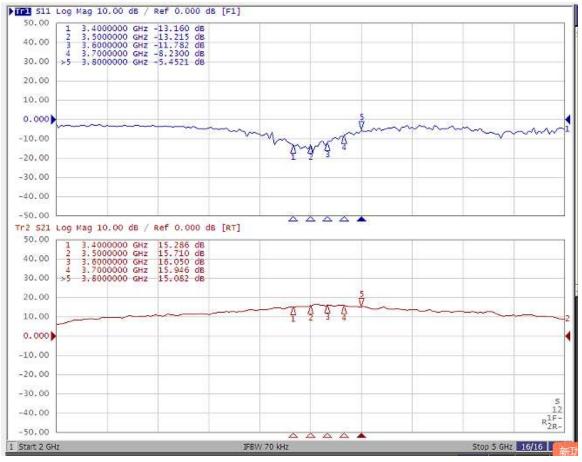
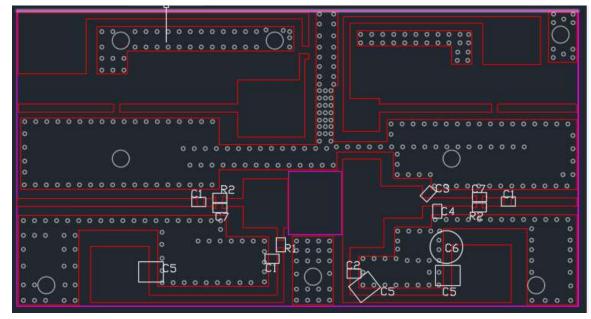



Figure 3: Picture of application board of 3.4-3.8GHz

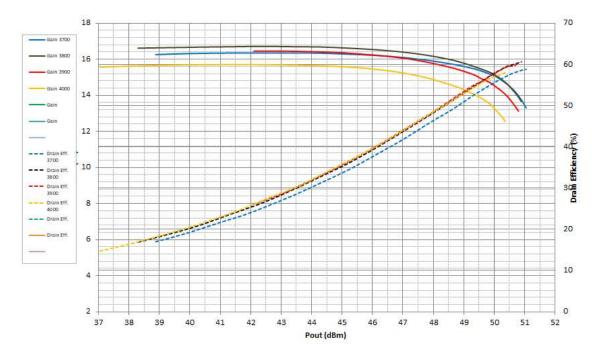


Table 4. Bill of materials of application board, RO4350B 30Mils (PCB layout upon request)

Component	Value	Quantity
C1	8.2pF	3
C2	5.6pF	1
R1	10 ohm	1
C3	0.2pF	1
C4	0.3pF	1
C5	10uF/63V	3
C6	470uF	1
C7	3.9pF	2
R2	50 ohm	2

3.7-4.0GHz

Figure 4: Efficiency and power gain as function of Pout (Measured on 3.7-4.0GHz application board) VDD = 50 Vdc, IDQ = 150 mA, Pulse width=20us, duty cycle=20%

Figure 5: Network plot for S11/S21

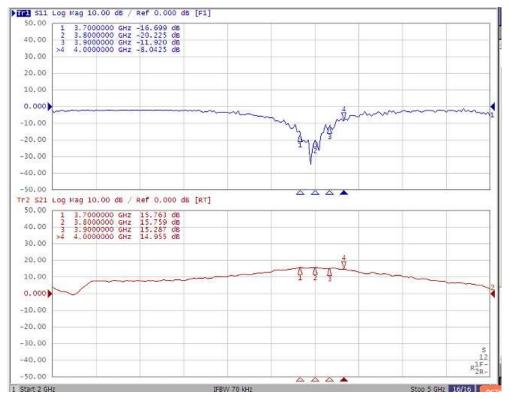


Figure 6: Picture of application board of 3.7-4.0GHz

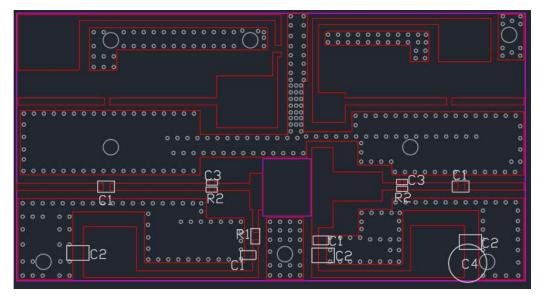
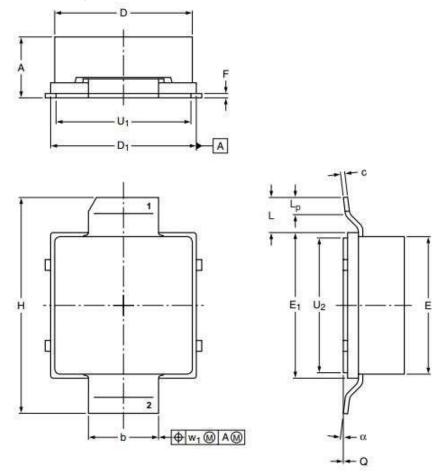



Table 5. Bill of materials of application board, RO4350B 30Mils (PCB layout upon request)

Component	Value	Quantity
C1	8.2pF	4
C2	10uF	3
R1	10 ohm	1
C3	3.9pF	2
R2	50 ohm	2
C4	470uF	1

Package Outline

Earless Flanged ceramic package; 2 leads

0 5 10 mm scale

	UNIT	Α	b	с	D	D_1	Е	E1	F	н	L	L _P	Q	U1	U2	W1	α
	100.000	3.63	3.38	0.23	6.55	6.93	6.55	6.93	0.23	10.29	1.65	1.02	+0.05	6.43	6.43	0.51	7°
	mm	3.05	3.23	0.18	6.40	6.78	6.40	6.78	0.18	10.03	1.00	0.51	-0.05	6.27	6.27	0.51 0°	0°
Ī	inches	0.143	0.133	0.009	0.258	0.273	0.258	0.273	0.009	0.405	0.065	0.040	+0.002	0.253	0.253	0.00	7°
	inches	0.120	0.127	0.007	0.252	0.267	0.252	0.267	0.007	0.395	0.065	0.020	-0.002	0.247	0.247	0.02	0°

OUTLINE		REFE	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	1330E DATE	
PKG-E-A						10/22/2013	

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2024/4/10	V1.0	Preliminary Datasheet Creation

Application data based on: ZXY-24-07/08

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.