# **ITGV10220BY2 LDMOS TRANSISTOR**

# 220W, 50V High Power RF LDMOS FETs

### Description

The ITGV10220BY2 is a 220-watt capable, high performance, input matched LDMOS FET, designed for UHF band up to 1GHz. It can be used for both CW and pulse application.

It is featured for high power and high ruggedness, low cost, suitable for ISM RF Energy application especially 915MHz etc

• Typical Performance (On Innogration 915MHz fixture with device soldered):

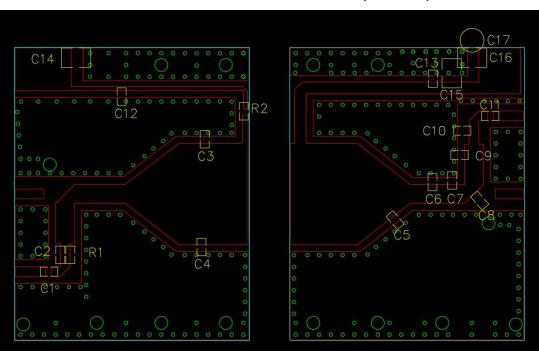
V<sub>DS</sub>= 50V, Idq=10mA, CW

| Freq  | Pin   | Gain | Pout | P3dB   |
|-------|-------|------|------|--------|
| (MHz) | (dBm) | (dB) | (W)  | Eff(%) |
| 915   | 32.2  | 21   | 230  | 69     |

#### **Features**

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- high stability and ruggedness
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Excellent thermal stability, low HCI drift
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

#### Table 1. Maximum Ratings


| Rating                                                                          | Syr                         | nbol             |           | Value |       |     | Unit |  |
|---------------------------------------------------------------------------------|-----------------------------|------------------|-----------|-------|-------|-----|------|--|
| DrainSource Voltage                                                             | V                           | DSS              |           |       | 110   |     | Vdc  |  |
| GateSource Voltage                                                              | \<br>\                      | / <sub>GS</sub>  | -7 to +10 |       |       |     | Vdc  |  |
| Operating Voltage                                                               | V                           | / <sub>DD</sub>  |           |       | +50   |     | Vdc  |  |
| Storage Temperature Range                                                       | Т                           | stg              |           | -65   |       | °C  |      |  |
| Case Operating Temperature                                                      | 1                           | Гc               |           |       | +150  |     | °C   |  |
| Operating Junction Temperature                                                  | -                           | ΓJ               |           |       |       | °C  |      |  |
| Table 2. Thermal Characteristics                                                |                             |                  |           |       |       |     |      |  |
| Characteristic                                                                  | Syr                         | nbol             |           | ١     | /alue |     | Unit |  |
| Thermal Resistance, Junction to Case ,Case Temperature                          | D                           |                  |           |       |       |     | °C/W |  |
| 80°C, 220W CW, 50 Vdc, IDQ = 100 mA                                             | R                           | Rejc             |           |       | 0.7   |     |      |  |
| Table 3. ESD Protection Characteristics                                         |                             |                  |           |       |       |     |      |  |
| Test Methodology                                                                |                             |                  | Class     |       |       |     |      |  |
| Human Body Model (per JESD22A114)                                               |                             | Class 2          |           |       |       |     |      |  |
| Table 4. Electrical Characteristics (TA = 25 $^\circ\!\!\!\!\!^\circ$ unless of | herwise ı                   | noted)           |           |       |       |     |      |  |
| Characteristic                                                                  |                             | Symb             | ol        | Min   | Тур   | Max | Unit |  |
| DC Characteristics (Per Side)                                                   |                             |                  |           |       |       |     |      |  |
| Drain-Source Voltage                                                            |                             |                  |           | 110   |       |     | v    |  |
| V <sub>GS</sub> =0, I <sub>DS</sub> =18.0mA                                     | V <sub>(BR)D</sub>          | SS               | 110       |       |       | V   |      |  |
| Zero Gate Voltage Drain Leakage Current                                         |                             |                  |           |       | 1     |     |      |  |
| (V <sub>DS</sub> = 50V, V <sub>GS</sub> = 0 V)                                  | IDSS                        |                  |           |       | I     | μΑ  |      |  |
| Gate—Source Leakage Current                                                     | Gate—Source Leakage Current |                  |           |       |       | 1   |      |  |
| (V <sub>GS</sub> = 10 V, V <sub>DS</sub> = 0 V)                                 |                             | I <sub>GSS</sub> |           |       |       |     | μΑ   |  |



# **ITGV10220BY2 LDMOS TRANSISTOR**

Document Number: ITGV10220BY2 Product Datasheet V1.0

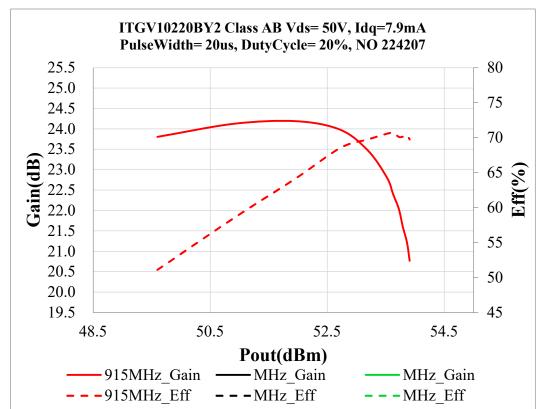
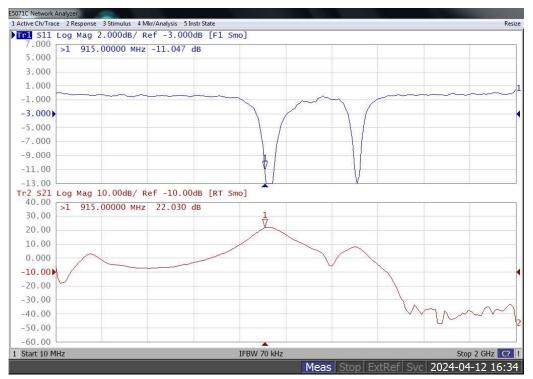
| Gate Threshold Voltage $(V_{DS} = 50V, I_D = 600 \ \mu A)$      | V <sub>GS</sub> (th) | 2.6 | V |
|-----------------------------------------------------------------|----------------------|-----|---|
| Gate Quiescent Voltage                                          | V                    | 3.1 | V |
| ( $V_{DD}$ = 50 V, $I_D$ = 100 mA, Measured in Functional Test) | $V_{GS(Q)}$          | 3.1 | v |

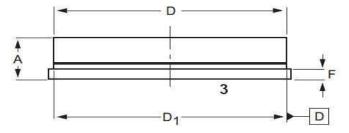


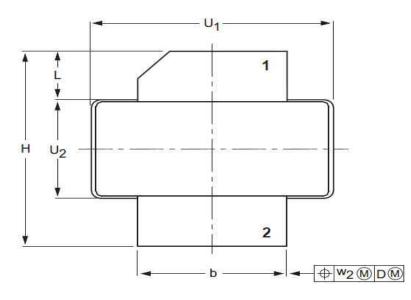
## **Reference Circuit of Test Fixture (915MHz)**

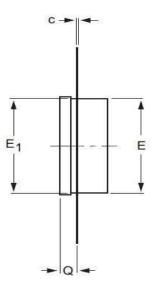
| Component      | Value        | Quantity |
|----------------|--------------|----------|
| U1             | ITGV10220BY2 | 1        |
| C1             | 5.6pF        | 1        |
| C2、C11、C12、C13 | 68pF         | 4        |
| C3、C5          | 10pF         | 2        |
| C4             | 15pF         | 1        |
| C6、C7          | 4.7pF        | 2        |
| C8             | 2pF          | 1        |
| C9             | 1pF          | 1        |
| C10            | 0.5pF        | 1        |
| C14、C15、C16    | 10uF/63V     | 3        |
| C17            | 470uF/63V    | 1        |
| R1             | <b>50</b> Ω  | 1        |
| R2             | 10 Ω         | 1        |

## **TYPICAL CHARACTERISTICS**



Figure 1. Power Gain and Drain Efficiency as Function of Pulsed CW Output Power


Figure 3. Network analyzer Output S11/S21




## Package Outline

### Earless flanged ceramic package; 2 leads (1—DRAIN、2—GATE、3—SOURCE)







0 5 10 mm

| UNIT   | A     | b     | с     | D     | D1    | E     | E1    | F     | н     | L     | Q     | U1    | U2    | W <sub>2</sub> |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------------|
| mm     | 4.72  | 12.83 | 0.15  | 20.02 | 19.96 | 9.50  | 9.53  | 1.14  | 19.94 | 5.33  | 1.70  | 20.70 | 9.91  | 0.05           |
|        | 3.43  | 12.57 | 0.08  | 19.61 | 19.66 | 9.30  | 9.25  | 0.89  | 18.92 | 4.32  | 1.45  | 20.45 | 9.65  | 0.25           |
| inches | 0.186 | 0.505 | 0.006 | 0.788 | 0.786 | 0.374 | 0.375 | 0.045 | 0.785 | 0.210 | 0.067 | 0.815 | 0.390 | 0.010          |
|        | 0.135 | 0.495 | 0.003 | 0.772 | 0.774 | 0.366 | 0.364 | 0.035 | 0.745 | 0.170 | 0.057 | 0.805 | 0.380 | 0.010          |

| I | OUTLINE |     | REFERENCE | EUROPEAN | ISSUE DATE          |            |
|---|---------|-----|-----------|----------|---------------------|------------|
|   | VERSION | IEC | JEDEC     | JEITA    | PROJECTION          | ISSUE DATE |
|   | PKG-B2  |     |           |          | $\bigcirc \bigcirc$ | 03/12/2013 |

# **ITGV10220BY2 LDMOS TRANSISTOR**

### **Revision history**

#### Table 5. Document revision history

| Date      | Revision | Datasheet Status      |
|-----------|----------|-----------------------|
| 2024/4/12 | Rev 1.0  | Preliminary Datasheet |
|           |          |                       |
|           |          |                       |

Application data based on ZYX-24-32

#### Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.