# 220W,50V High Power RF LDMOS FETs

### **Description**

The ITEV05220C9 is a 220watt capable, high performance, internally matched LDMOS FET, designed for RF Energy or ISM application centered at 433MHz, in cost effective 12\*10mm QFN plastic package,

It can be soldered on PCB through high density grounding vias or soldered directly on heatsink, according to different applications.

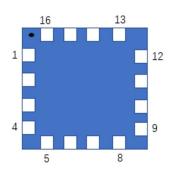




Typical CW performance(on Innogration test board with device soldered on heatsink directly)
50V, Idq=1mA

| Freq  | P1dB  | P1dB  | P1dB   | P1dB     | P3dB  | P3dB  | P3dB   |
|-------|-------|-------|--------|----------|-------|-------|--------|
| (MHz) | (dBm) | (W)   | Eff(%) | Gain(dB) | (dBm) | (W)   | Eff(%) |
| 433   | 52.8  | 190.6 | 72.6   | 21.24    | 53.47 | 222.5 | 74     |

#### 40V, Idq=1mA


| Freq  | P1dB  | P1dB  | P1dB   | P1dB     | P3dB  | P3dB  | P3dB   |
|-------|-------|-------|--------|----------|-------|-------|--------|
| (MHz) | (dBm) | (W)   | Eff(%) | Gain(dB) | (dBm) | (W)   | Eff(%) |
| 433   | 50.94 | 124.0 | 74     | 20.2     | 51.62 | 145.3 | 75     |

Recommended driver: ITGV22010C6

#### **Features**

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- · Excellent thermal stability, low HCI drift
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

## Pin Configuration and Description (Top view)



| Pin No.      | Symbol                                          | Description                                                                                   |
|--------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 5-8          | RF IN/Vgs                                       | RF Input/Gate bias                                                                            |
| 13-16        | RF OUT/Vds                                      | RF Output/Drain bias                                                                          |
| Others       | rs NC Can be left as either no use or grounding |                                                                                               |
|              |                                                 | DC/RF Ground. Proposed to be soldered to heatsink plane directly for the best CW thermal      |
| Package Base | GND                                             | and RF performance. Soldered through vias or copper coin allowed for pulsed CW                |
|              |                                                 | applications, but will result in excessive junction temperatures and different RF performance |

### **Table 1. Maximum Ratings**

| Rating                         | Symbol           | Value       | Unit |
|--------------------------------|------------------|-------------|------|
| DrainSource Voltage            | V <sub>DSS</sub> | +110        | Vdc  |
| GateSource Voltage             | V <sub>GS</sub>  | -10 to +10  | Vdc  |
| Operating Voltage              | $V_{DD}$         | +55         | Vdc  |
| Storage Temperature Range      | Tstg             | -65 to +150 | °C   |
| Case Operating Temperature     | T <sub>c</sub>   | +150        | °C   |
| Operating Junction Temperature | T₃               | +225        | °C   |

#### **Table 2. Thermal Characteristics**

| Characteristic                                                              | Symbol | Value | Unit   |  |
|-----------------------------------------------------------------------------|--------|-------|--------|--|
| Thermal Resistance, Junction to Case                                        | Do 10  | 0.7   | 00/14/ |  |
| T <sub>C</sub> = 85°C, T <sub>J</sub> =200°C, DC test, soldered on heatsink | RθJC   | 0.7   | °C/W   |  |

#### **Table 3. ESD Protection Characteristics**

| Test Methodology                  | Class   |
|-----------------------------------|---------|
| Human Body Model (per JESD22A114) | Class 2 |

### Table 4. Electrical Characteristics ( $T_A$ = 25 $\,^{\circ}$ C unless otherwise noted)

| Characteristic                                                                       | Symbol               | Min      | Тур  | Max | Unit |
|--------------------------------------------------------------------------------------|----------------------|----------|------|-----|------|
| DC Characteristics (per half section)                                                |                      |          |      |     |      |
| Drain-Source Voltage                                                                 | V <sub>(BR)DSS</sub> |          | 110  |     | V    |
| V <sub>GS</sub> =0, I <sub>DS</sub> =1.0mA                                           | V (BR)DSS            |          |      |     | V    |
| Zero Gate Voltage Drain Leakage Current                                              | pss                  |          |      | 1   |      |
| $(V_{DS} = 75V, V_{GS} = 0 V)$                                                       | IDSS                 | <u> </u> |      | 1   | μΑ   |
| Zero Gate Voltage Drain Leakage Current                                              |                      |          |      | 1   | μΑ   |
| $(V_{DS} = 50V, V_{GS} = 0 V)$                                                       | IDSS                 |          |      | ı   | μΑ   |
| GateSource Leakage Current                                                           | I <sub>GSS</sub>     |          |      | 1   |      |
| $(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$                                      | IGSS                 |          |      | ı   | μА   |
| Gate Threshold Voltage                                                               | V <sub>GS</sub> (th) |          | 2.65 |     | V    |
| $(V_{DS} = 50V, I_D = 600 \mu A)$                                                    | V GS(LIT)            |          | 2.00 |     | V    |
| Gate Quiescent Voltage                                                               | V                    |          | 3.4  |     | V    |
| $(V_{DD} = 50 \text{ V}, I_D = 200 \text{ mA}, \text{ Measured in Functional Test})$ | $V_{GS(Q)}$          |          | 3.4  |     | V    |

 $\textbf{Load Mismatch (In Innogration Test Fixture, 50 ohm system):} \ V_{DD} = 50 \ Vdc, \ I_{DQ} = 200 \ mA, \ f = 433 MHz, \ pulse \ width: 100 us, \ duty \ cycle: 10\% \ and \ respectively. }$ 

| Load 10:1 All phase angles, at 220W Pulsed CW Output Power   | l No Device Degradation |
|--------------------------------------------------------------|-------------------------|
| Load 10.1 All phase angles, at 22000 Pulsed CVV Output Power | I No Device Degradation |

### TYPICAL CHARACTERISTICS

Figure 1: CW Gain and Power Efficiency as a Function of Pout at 433MHz

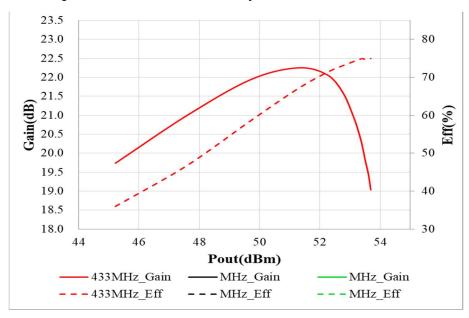
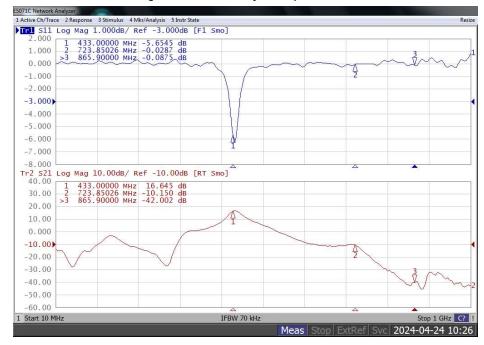
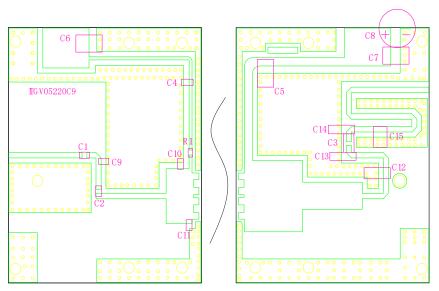
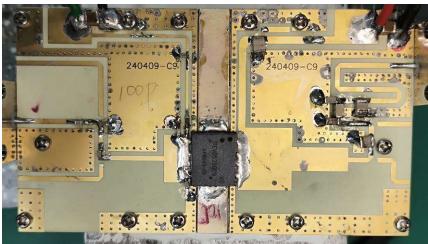
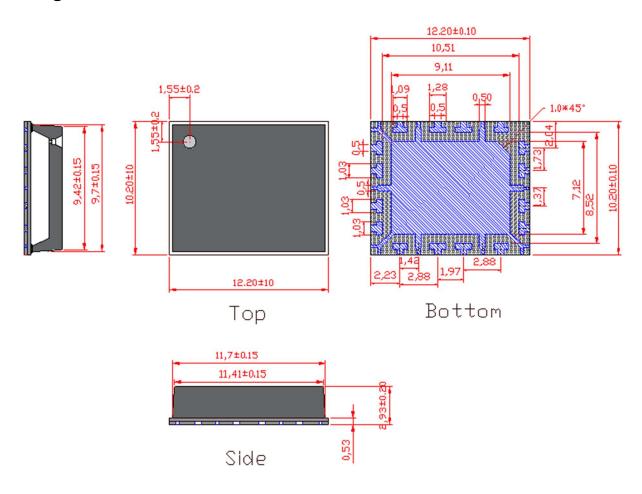






Figure 2: Network analyzer output S11/221



## **Reference Circuit of Test Fixture Assembly Diagram**






**Table 5. Test Circuit Component Designations and Values** 

| Designator | Comment         | Footprint | Quantity |
|------------|-----------------|-----------|----------|
| C1         | 3.9 pF(High Q)  | 0603/0805 | 1        |
| C2, C4     | 100 pF (High Q) | 0603/0805 | 2        |
| C3, C5     | 100 pF (High Q) | 1210      | 2        |
| C6, C7     | 10 uF/100V      | 1210      | 2        |
| C8         | 470 uF/63V      |           | 1        |
| R1         | 10 Ω            | 0603      | 1        |
| C9, C11    | 20 pF (High Q)  | 0603/0805 | 2        |
| C10        | 30 pF (High Q)  | 0603/0805 | 1        |
| C12        | 1.5 pF (High Q) | 1210      | 1        |
| C13, C14   | 3.9 pF (High Q) | 1210      | 2        |
| C15        | 10 pF (High Q)  | 1210      | 1        |

## Package Dimensions (Unit:mm)



## **Revision history**

Table 5. Document revision history

| Date      | Revision | Datasheet Status               |
|-----------|----------|--------------------------------|
| 2024/4/24 | Rev 1.0  | Preliminary Datasheet Creation |
|           |          |                                |
|           |          |                                |

Application data based on LSM-24-13

#### **Disclaimers**

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.