GaN HEMT 50V, 200W, 5.8GHz RF Power Transistor

Description

The STCV58200F4C is a single ended 200watt, GaN HEMT, ideal for ISM applications at 5.8GHz. It can support CW, pulse and linear applications.

There is no guarantee of performance when this part is used outside of stated frequencies.

- Typical pulse CW performance across the band with device soldered
- VDD = 50 Vdc,Idq=100mA Tc=25°C, air cooling

CW:

Freq (MHz)	Pin(dBm)	Psat(dBm)	Psat(W)	lds(A)	Gain(dB)	Eff(%)
5800	42.7	53.36	216.77	7.82	10.66	55.44

Recommended driver: STAV58030J2

Applications

- C band Class AB power amplifier
- 5.8GHz RF Energy

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- Turning the device OFF
- 1. Set VGS to the pinch--off (VP) voltage, typically –5 V $\,$
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically –5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V _{GS}	-8 to +0.5	Vdc
Operating Voltage	V _{DD}	55	Vdc
Maximum gate current	lgs	25.2	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

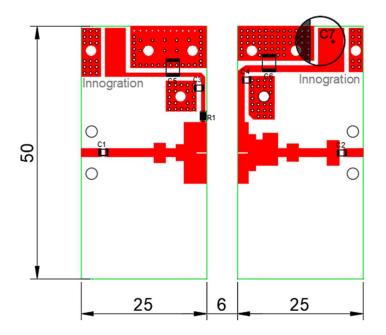
Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	D alo	0.75	°C /W
T _c = 25°C, at Pout=200W at 5.8GHz	Rejc	0.75	C /W

Table 3. Electrical Characteristics (TA = 25°C unless otherwise noted)

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=25.2mA	V _{DSS}		200		V


Document Number: STCV58200F4C Preliminary Datasheet V1.0

Gate Threshold Voltage	VDS =10V, ID = 25.2mA	V _{GS(th)}	-4	-	-2	V
Gate Quiescent Voltage	VDS =50V, IDS=100mA, Measured in Functional Test	V _{GS(Q)}		3.35		V
Ruggedness Characteristics						

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	5.8GHz, Pout=200W pulse CW					
	All phase,	VSWR		10:1		
	No device damages					

Reference Circuit of Test Fixture Assembly Diagram

PCB materials: Ro4350B , DXF file upon request

Component	Description	Suggestion		
C7	470uF/63V			
C5,C6	10uF	10uF/100V		
C1, C2, C3 C4	3.9pF	MQ300805		
R1	Chip Resistor,10Ω	0805		
РСВ	30mil Rogers 4350B			

Figure 3: Efficiency and power gain as function of Pout

(VDD = 50 Vdc, IDQ = 100mA, Pulse width=20us, duty cycle=10%, 5.8GHz)

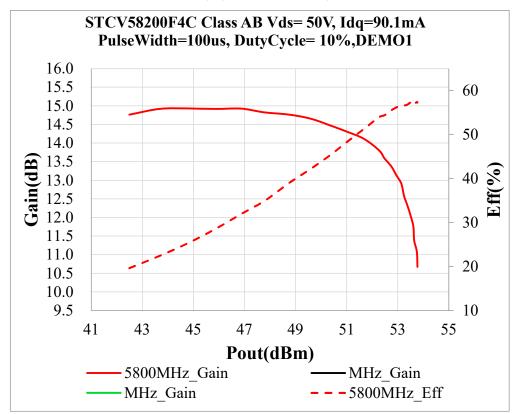
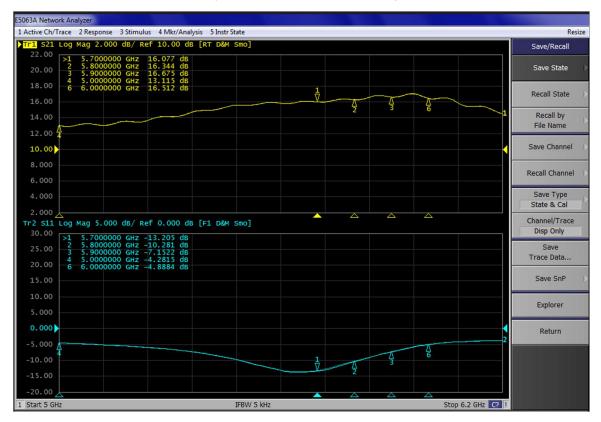
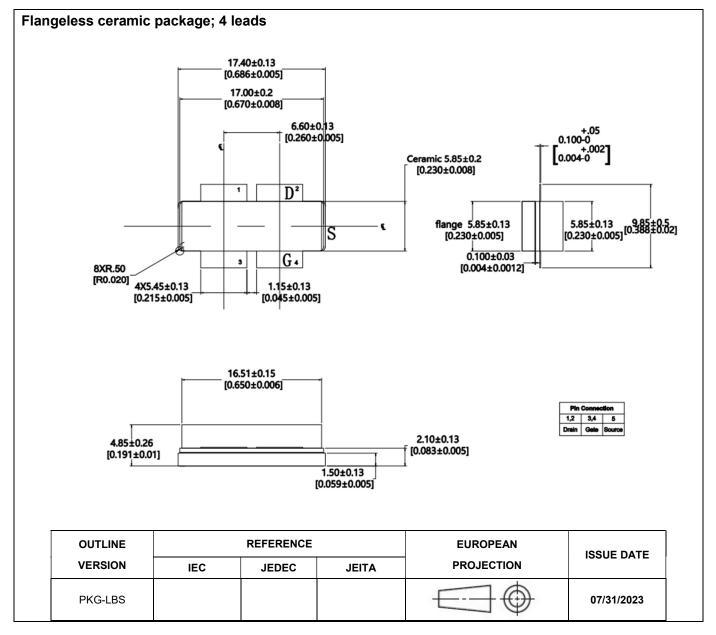




Figure 4: S11/S21 output from Network analyser (VDS= 50V, IDQ=500 mA Vgs =-3.2V)

Package Outline

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2024/4/25	V1.0	Preliminary Datasheet Creation

Application data based on: YHG-24-06

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.