GaN HEMT 50V, 280W,0.6-1.0GHz RF Power Transistor

Description

The STBV10280C9 is a 280watt capable Doherty pair, GaN HEMT, ideal for for 4G/5G cellular applications from 0.6 to 1GHz..

It can be configured as asymmetrical Doherty delivering 30-40W average power, according to normal 8.5-9.5dB back off.

There is no guarantee of performance when this part is used outside of stated frequencies.

• Typical RF performance on **758-803MHz** full band asymmetrical Doherty with device soldered VDS= 50V, IDQ=100mA(Vgm=-3.22V, Vgp=-5.8V)

ACPR @46.5dBm_1C-WCDMA					
Freq	ACPR	Gain	Efficiency		
(MHz)	(dBc)	(dB)	(%)		
758	-28.11	17.25	62.32		
780	-28.85	17.06	61.45		
803	-29.52	16.75	62.24		

(1)1C WCDMA; Signal PAR = 10 dB @ 0.01% Probability on CCDF.

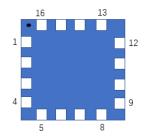
Typical RF performance on 859-894MHz full band asymmetrical Doherty with device soldered

VDS= 50V, IDQ=60mA(Vgm=-3.25V, Vgp=-5V)

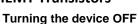
Freq	Pout	CCDF	Ppeak	Ppeak	ACPR	Gain	Efficiency
(MHz)	(dBm)	(dB)	(dBm)	(W)	(dBc)	(dB)	(%)
859	46.56	7.92	54.48	280.6	-31.1	18.9	62.1
876	46.58	8.17	54.75	298.5	-30.7	18.7	62.8
894	46.59	8.10	54.69	294.3	-29.6	18.5	62.6

(1)1C WCDMA; Signal PAR = 10 dB @ 0.01% Probability on CCDF.

Applications


- Asymmetrical Doherty amplifier within 0.6-1GHz
- UHF TV
- P band power amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors


Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically –5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Pin Configuration and Description (Top view)

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Document Number: STBV10280C9 Preliminary Datasheet V1.2

Pin No.	Symbol	Description			
1,2	RF IN/Vgs of Main	RF Input/Gate bias of main path			
3,4	RF IN/Vgs of Peak	RF Input/Gate bias of peak path			
9,10	RF OUT/Vds of Peak	RF Output/Drain bias of peak path			
11,12	RF OUT/Vds of Main	RF Output/Drain bias of main path			
Other Pins	GND	Grounding			
		DC/RF Ground. Proposed to be soldered to heatsink plane directly for the best CW thermal			
Package Base	GND	and RF performance. Soldered through vias or copper coin allowed for pulsed CW and back			
		off applications, but will result in higher junction temperatures			

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V_{GS}	-8 to +0.5	Vdc
Operating Voltage	V _{DD}	55	Vdc
Maximum gate current	lgs	33.6	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

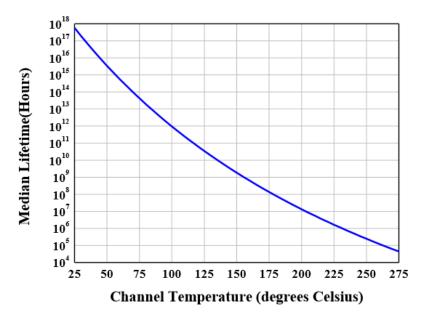
Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Rejc	2	°C /W
T_c = 85°C, at Pd=30W, on Doherty application board	KAJC	5	-C /vv

Table 3. Electrical Characteristics (TA = 25° unless otherwise noted)

DC Characteristics (Main path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=16.8mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 16.8mA	V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage	VDS =50V, IDS=100mA, Measured in Functional Test	, Veere		-3.2		V


DC Characteristics (Peak path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=16.8mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 16.8mA	$V_{GS(th)}$	-4		-2	V
Gate Quiescent Voltage	VDS =50V, IDS=100mA, Measured in Functional Test	V _{GS(Q)}		-3.2		V

Ruggedness Characteristics

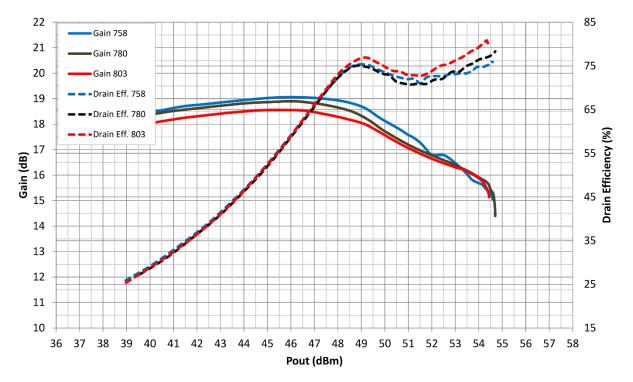
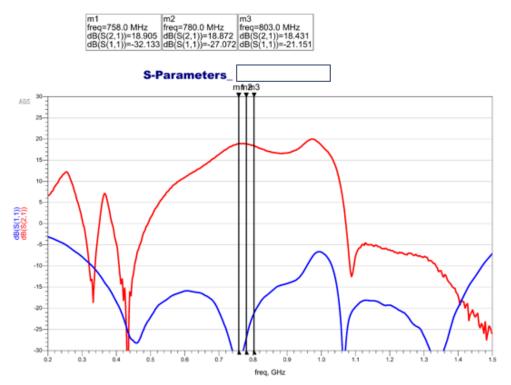

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	1GHz, Pout=45W WCDMA 1 Carrier in Doherty circuit All phase, No device damages	VSWR		10:1		

Figure 2: Median Lifetime vs. Channel Temperature



758-803MHz

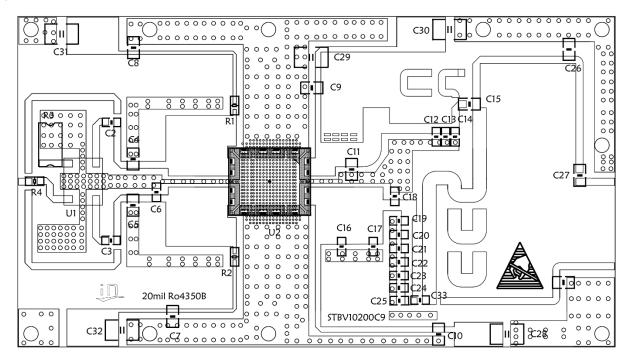

Figure 3: Efficiency and power gain as function of Pout

Figure 4: Network analyzer output, S11 and S21

Figure 5: Picture of application board Doherty circuit

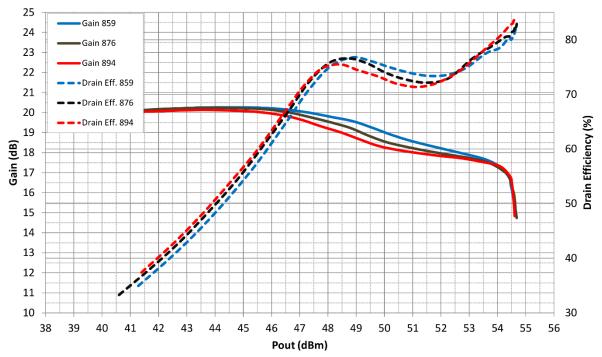
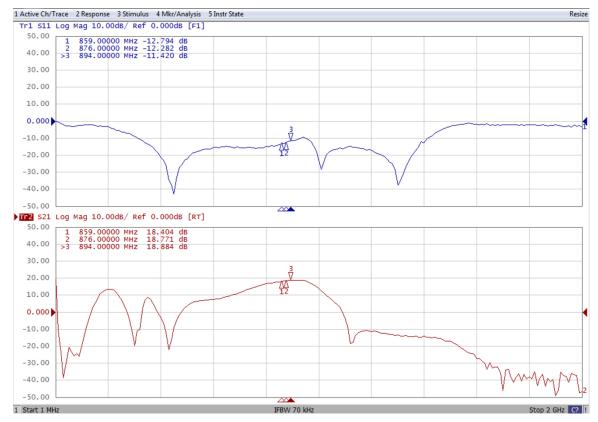
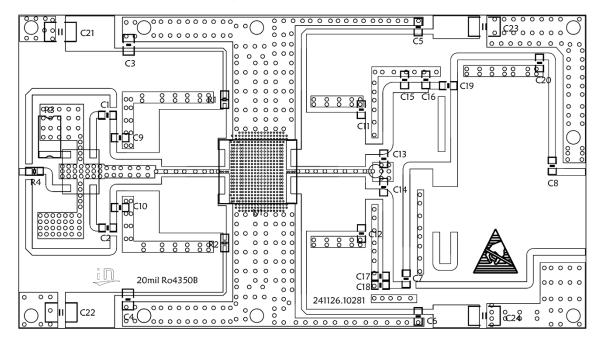

Document Number: STBV10280C9 Preliminary Datasheet V1.2

Table 4. Bill of materials of application board (PCB layout upon request, RO4350B 20mils)

Reference	Footprint	Value	Quantity	
C2, C3, C7, C8, C9, C10, C15, C27, C33	0603	100pF/250V	9	
C4, C5	0603	10pF/250V	2	
C6, C20, C22	0603	1.1pF/250V	3	
C11	0603	6.8pF/250V	1	
C12, C13, C14, C18, C25	0603	2.4pF/250V	5	
C16	0603	5.6pF/250V	1	
C17	0603	0.3pF/250V	1	
C19	0603	1.8pF/250V	1	
C21	0603	2.0pF/250V	1	
C23	0603	3.9pF/250V		
C24	0603	0.2pF/250V	1	
C26	0603	3.3pF/250V	1	
C28, C29, C30, C31, C32	1210	10uF/100V	5	
R1, R2	0603	10R	2	
R3	2512	51R	1	
U1	3.18*5.08mm	X3C07F1-02S	1	
U2	С9	STBV10280C9	1	

859-894MHz

Figure 7: Network analyzer output, S11 and S21

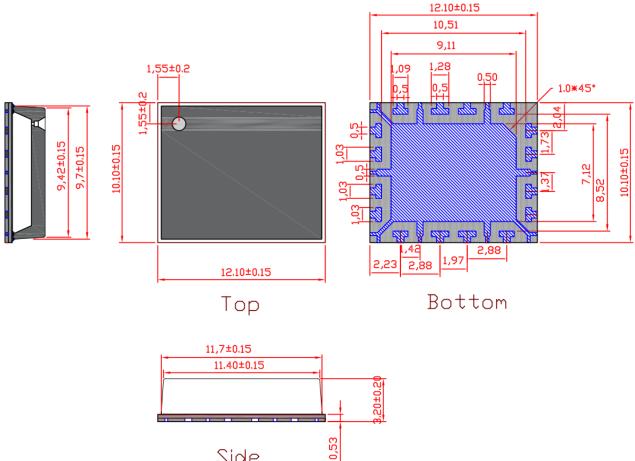

Figure 8: Picture of application board Doherty circuit

Table 5. Bill of materials of application board (PCB layout upon request, RO4350B 20mils)

Reference	Footprint	Value	Quantity
C1, C2, C3, C4, C5, C6, C7, C8	0603	68pF/250V	8
C9, C10	0603	6.8pF/250V	2
C14	0603	1.0pF/250V	1
C11, C12, C13, C14, C15, C16, C17	0603	2.0pF/250V	7
C18	0603	3.3pF/250V	1
C19	0603	10pF/250V	1
C20	0603	3.0pF/250V	1
C21, C22, C23, C24	1210	10uF/100V	4
R1, R2	0603	10R	2
R3	2512	51R	1
R4	0603	OR	1
U2	3.18*5.08mm	DC07F02	1
U1	С9	STBV10280C9 ^{V3}	1

Package Dimensions (Unit:mm)

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status	
2023/6/25	V1.0	Preliminary Datasheet Creation	
2023/8/17	V1.1	Modification of package drawing on last page	
2024/11/26	V1.2	Add 859-894M,728-768M new application result	

Application data based on: ZBB-23-20/24-51/24-52

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.