Gallium Nitride, 160W,2.0-3.5GHz RF Power Transistor Description

The GTAH30160D4 is a 160W 28V, both input and output matched GaN HEMT, ideal for multiple applications from 2.0-3.0GHz, and at higher voltage 32V, capable to output more than 200W.

It can support linear and saturated application, for both CW and pulsed CW.

There is no guarantee of performance when this part is used outside of stated frequencies.

• Typical performance across 2.0-3.0GHz class AB application circuit with device soldered Vds= 28V, Idq=100mA(Vgs=-2.7V) , CW

GTAH30160D4	Ļ

Freq(MHz)	Pin(dBm)	Pout(dBm)	Pout(W)	lds(A)	Gain(dB)	Eff(%)
2000	39.56	52.58	181.1	11.6	13.0	55.8
2100	39.79	52.76	188.8	12.5	13.0	53.9
2200	40.06	52.60	182.0	11.9	12.5	54.6
2300	39.79	52.54	179.5	11.6	12.8	55.3
2400	39.91	52.61	182.4	12.6	12.7	51.7
2500	39.73	52.83	191.9	12.7	13.1	54.0
2600	39.76	52.96	197.7	13.0	13.2	54.5
2700	38.95	52.75	188.4	12.6	13.8	53.6
2800	38.88	52.60	182.0	12.5	13.7	52.1
2900	39.20	52.50	177.8	12.7	13.3	50.0
3000	39.43	52.53	179.1	13.4	13.1	48.5

Applications

- S band pulse power amplifier
- S band CW amplifier
- 5G wideband power amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+150	Vdc
GateSource Voltage	V _{GS}	-10 to +2	Vdc
Operating Voltage	V _{DD}	32	Vdc

Document Number: GTAH30160D4 Preliminary Datasheet V1.0

		5		
Maximum gate current	lgs	43.2	mA	
Storage Temperature Range	Tstg	-65 to +150	°C	
Case Operating Temperature	Tc	+150	°C	
Operating Junction Temperature	TJ	+225	°C	
Table 2. Thermal Characteristics	· · · · ·			
Characteristic	Symbol	Value	Unit	
Thermal Resistance, Junction to Case by FEA	Date	0.4	00 MM	
T _c = 85°C, at Pout=160W at 3.0GHz	Rejc	0.4	°C /W	

Table 3. Electrical Characteristics (TA = 25°C unless otherwise noted)

DC Characteristics (measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=43.2mA	V _{DSS}		150		V
Gate Threshold Voltage	VDS =10V, ID = 43.2mA	V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage	VDS =28V, IDS=80mA, Measured in Functional Test	V _{GS(Q)}		-2.7		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	3GHz, Pout=160W Pulsed CW					
	All phase,	VSWR		10:1		
	No device damages					

Figure 2: Median Lifetime vs. Channel Temperature

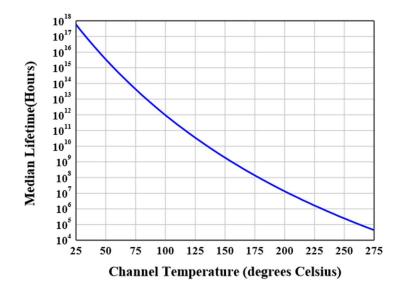


Figure 3 Network analyzer output, S11 and S21 (2.0-3.0GHz Class AB) Vds=28V, Idq=500mA

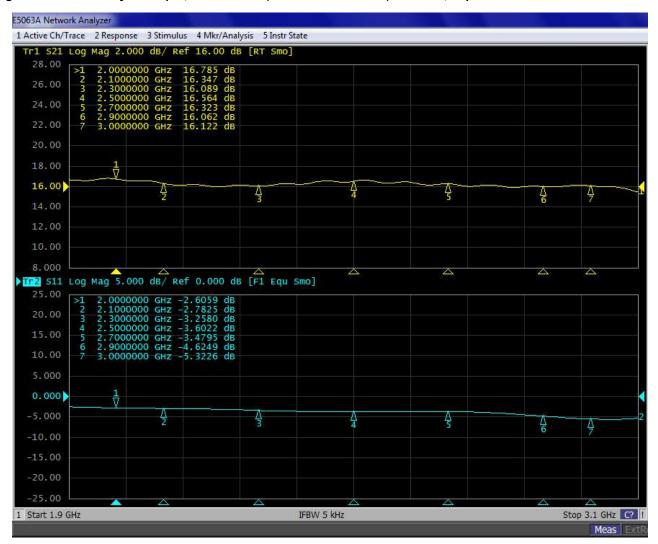
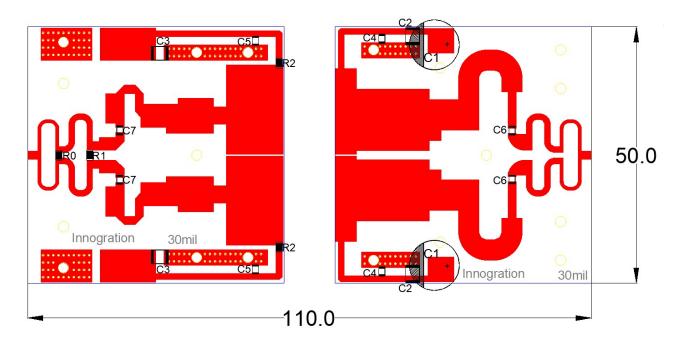
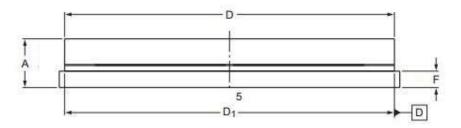
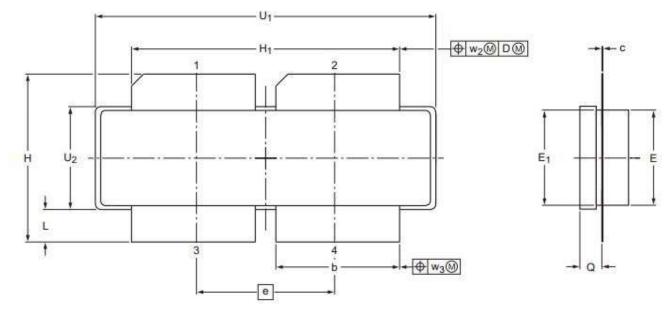
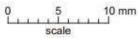



Figure 5: Picture of application board 2.0-3.0GHz class AB




Table 4. Bill of materials of application board (PCB layout upon request)


Component	Description	Suggestion
C1	470uF/63V	
C2, C3	10uF	1210
C4, C5, C6, C7	12pF	MQ300805
R0	Chip Resistor,100Ω	0805
R1	Chip Resistor,240Ω	1206
R2	Chip Resistor,10Ω	0805
РСВ	Rogers 4350B, thickness 30 mils, 1oz copper	

Package Outline

Earless flanged ceramic package; 4 leads (1, 2—DRAIN, 3, 4—GATE, 5—SOURCE)

UNIT	Α	b	с	D	D1	е	Е	E1	F	н	H1	L	Q	U1	U ₂	W ₂	W ₂
	4.7	11.81	0.18	31.55	31.52	12 72	9.50	9.53	1.75	17.12	25.53	3.48	2.26	32.39	10.29	0.25	0.25
mm	4.2	11.56	0.10	30.94	30.96	13.72	9.30	9.27	1.50	16.10	25.27	2.97	2.01	32.13	10.03	0.25	0.25
inches	0.185	0.465	0.007	1.242	1.241	0.540	0.374	0.375	0.069	0.674	1.005	0.137	0.089	1.275	0.405	0.01	0.01
mulles	0.165	0.455	0.004	1.218	1.219	0.340	0.366	0.365	0.059	0.634	0.995	0.117	0.079	1.265	0.395	0.01	0.01

OUTLINE		REFERENCE		EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
PKG-D4					03/12/2013

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2023/9/15	V1.0	Preliminary Datasheet Creation

Application data based on: YHG-23-22

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.