

915MHz ,600W, RF Power GaN HEMT

Description

The STBV10600RBY2 is a 600-watt, prematched GaN HEMT, designed for multiple applications with frequencies at 915MHz narrower band.

It can support both CW and pulse operation or any other linear applications

There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

•Typical Performance (On Innogration fixture with device soldered):

 $V_{DD} = 50 \text{ Volts}, V_{GS} = -4.8 \text{V}$

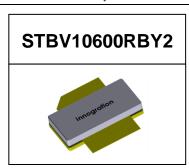
· DD - CC							
Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
915	57.49	561.0	75.3	17.17	57.9	616.6	80.5

Applications and Features

- Multiple 915MHz RF Energy applications
 - Commercial microwave oven
 - Industry heating
- P band power amplifier
- · L band, avionics power amplifier
- Thermally Enhanced Industry Standard Package
- High Reliability Metallization Process
- Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON


- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V_{GS}	-10 to +0.5	Vdc
Operating Voltage	V_{DD}	55	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _C	+150	°C
Operating Junction Temperature	T _J	+225	°C

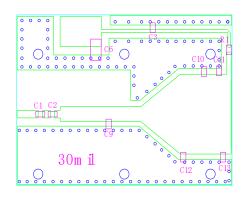
Document Number:STBV10600RBY2 Preliminary Datasheet V1.0

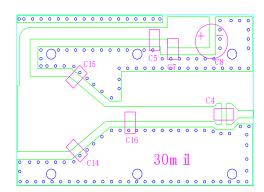
Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance by Finite Element Analysis,			
Channelto—Case ,Case Temperature 25°C, PD =	Rechc(FEA)	0.28	°C /W
150W (For reliability estimation)			

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics


Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=90mA	V_{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 90 mA	$V_{GS(th)}$		-3.7		V
Gate Quiescent Voltage	VDS =50V, IDS=100mA, Measured in Functional Test	$V_{GS(Q)}$		-3.4		V


Functional Tests (In Innogration Test Fixture, 50 ohm system): V_{DD} = 50 Vdc, V_{GS}=-4.8V, f = 915MHz, Pulsed CW 20us/10%

Characteristic	Symbol	Min	Тур	Max	Unit
Power Gain @ P3dB	Gp		15		dB
3dB Compression Point	P3dB		600		W
Drain Efficiency@P3dB	η _D		80		%
Input Return Loss	IRL	-3	-5		dB

Reference Circuit of Test Fixture Assembly Diagram

PCB materials: Roger 4350B,30mils, DXF file upon request

Designator	Footprint	Comment	Quantity
C1, C3	0805	47pF	2
C2	0805	4.7pF	1
C4, C5	1210	47pF	2
C6, C7	1210	10 uF/100V	3
C8		470 uF/63V	1
C9	0805	2.7 pF	1
C10, C11	0805	10 pF	1
C12	0805	6.8 pF	1
C13	0805	12 pF	1
C14, C15, C16	1210	6.8 pF	3
R1	0603	10 Ω	1

TYPICAL CHARACTERISTICS

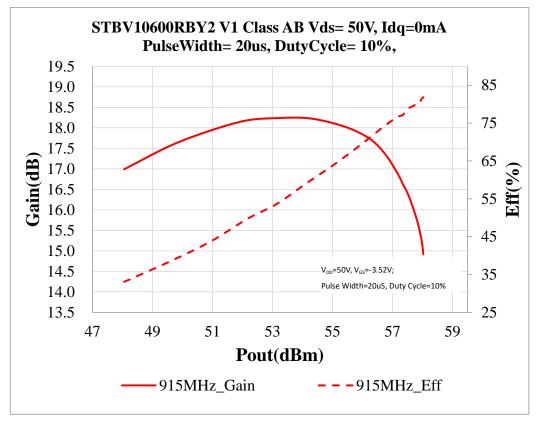
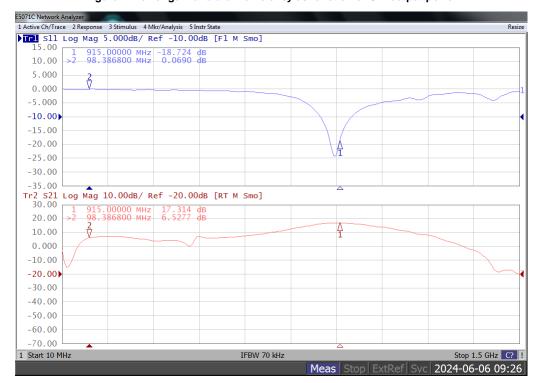
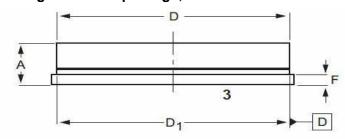
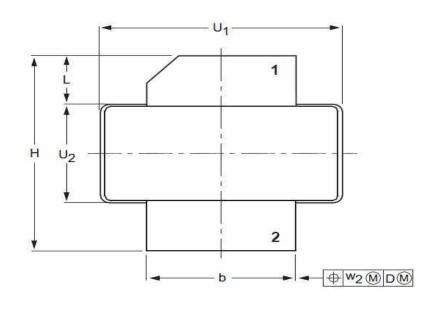
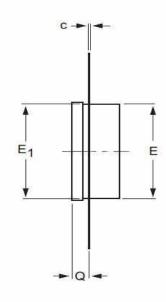


Figure 1. Power gain and drain efficiency as function of CW output power


Figure 2. Network analyzer output S11/S21



Package Outline

Earless flanged ceramic package; 2 leads (1—DRAIN、2—GATE、3—SOURCE)

UNIT	Α	b	С	D	D ₁	E	E ₁	F	Н	L	Q	U1	U_2	W ₂
mm	4.72	12.83	0.15	20.02	19.96	9.50	9.53	1.14	19.94	5.33	1.70	20.70	9.91	0.25
	3.43	12.57	0.08	19.61	19.66	9.30	9.25	0.89	18.92	4.32	1.45	20.45	9.65	0.25
inches	0.186	0.505	0.006	0.788	0.786	0.374	0.375	0.045	0.785	0.210	0.067	0.815	0.390	0.040
	0.135	0.495	0.003	0.772	0.774	0.366	0.364	0.035	0.745	0.170	0.057	0.805	0.380	0.010

scale

10 mm

OUTLINE	REFERENCE			EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	IOOOL DATE
PKG-B2					03/12/2013

Document Number:STBV10600RBY2 Preliminary Datasheet V1.0

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2024/6/6	V1.0	Preliminary Datasheet Creation

Application data based on LSM-24-19

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.