Document Number: XTAH15140GX Advanced Datasheet V1.1

GaN HEMT 28V, HF-1.5GHz 140W, RF Power Transistor Description

The XTAH15140GX is a 140W GaN HEMT, designed for multiple application up to 1.5GHz

It can be used in CW, Pulse and any other modulation modes. There is no guarantee of performance

when this part is used in applications designed Outside of these frequencies.

• Typical class AB 400-500MHz RF Performance with device soldered

Vds=28V, Idq=100mA, CW

Voltage(V)	Pin(dBm)	Psat(dBm)	Psat(W)	Gain(dB)	Eff(%)
28	35	>51	120~150	16-17	65-70

Typical class AB 840-1020MHz RF Performance with device soldered

Vds=28V, Idq=100mA, CW

Voltage(V)	Pin(dBm)	Psat(dBm)	Psat(W)	Gain(dB)	Eff(%)
28	36	>50.5	115-150	15-16	60-66

Applications

- L band power amplifier
- P band power amplifier
- ISM/RF Energy power amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically –5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level
- Turning the device OFF
- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

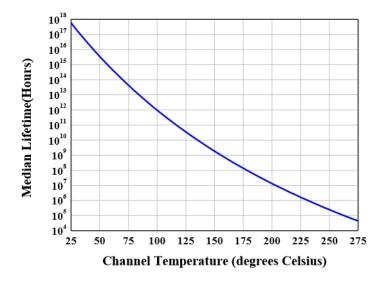
Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V_{GS}	-8 to +0.5	Vdc
Operating Voltage	V _{DD}	50	Vdc
Maximum gate current	lgs	36	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	D elo	1 25	°C /W
T _c = 85°C, at Pdiss=60W	Rejc	1.25	-C /vv

Table 3. Electrical Characteristics (TA = 25°C unless otherwise noted)

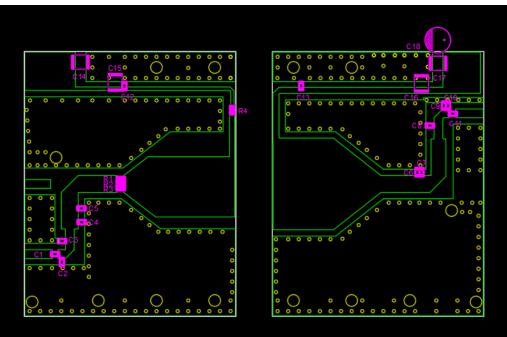
DC Characteristics (measured on wafer prior to packaging)


Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=36mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 36mA	V _{GS(th)}	-4		-2	V

Document Number: XTAH15140GX Advanced Datasheet V1.1

Gate Quiescent Voltage	VDS =28V, IDS=100mA, Measured in Functional Test V _{GS(Q)} -3.24			V		
Ruggedness Characteristics						
Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	1.5GHz, Pout=140W Pulsed CW					
	All phase, VSWR 10:1		10:1			
	No device damages					

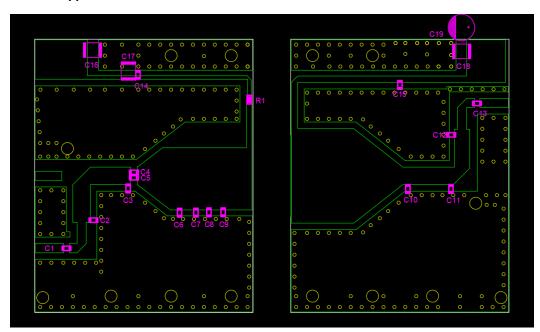
Figure 2: Median Lifetime vs. Channel Temperature


0.4-0.5GHz Typical performance

Document Number: XTAH15140GX Advanced Datasheet V1.1

Figure 4: Picture of application board

Reference	Footprint	Value	Quantity
C1	0603	3 20pF	
C2, C3, C5, C10	0603 5.6pF		4
C4, C7	0603	10pF	2
C6	0603	12pF	1
C8	0603	0.5pF	1
C9	0603	4.7pF	1
C11, C12	0603	82pF	2
C13	0603	100pF	1
C14, C15, C16, C17	1210	10uF/63V	4
C18		470uF/63V	1
R1, R2, R3, R4	0603	0603 10ohm	
U1	GX	GX XTAH15140GX	



0.85-1GHz Typical performance

Figure 5: Network analyzer output S11/S21

Figure 6: Picture of application board

Document Number: XTAH15140GX Advanced Datasheet V1.1

Reference	Footprint	Value	Quantity
C1, C3	0603	6.8pF	2
C2	0603	2.2pF	1
C4, C5	0603	34pF	2
C6, C8	0603	2.7pF	2
C7	0603	8.2pF	1
C9, C10	0603	3.6pF	2
C11	0603	1pF	1
C12	0603	1.5pF	1
C13, C14, C15	0603	68pF	3
C16, C17, C18	1210	10uF/63V	3
C19		470uF/63V	1
R1	0603	10ohm	1
U1	GX	XTAH15140GX	

Package Outline

Flanged ceramic package; 2 leads

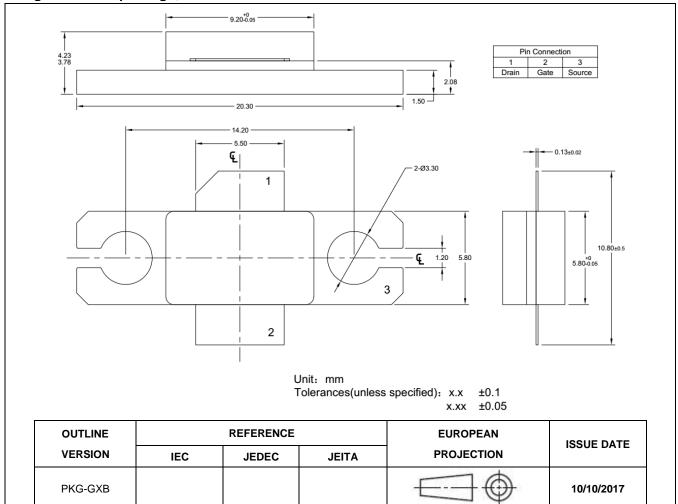


Figure 1. Package Outline PKG-G2E

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2025/1/2	V1.0	Advanced Datasheet Creation

Application data based on: ZYX-25-01/02

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.