Innogration (Suzhou) Co., Ltd.

Document Number: GTAH17280RC2 Preliminary Datasheet V1.0

Gallium Nitride 28V, 280W,1.1-1.7GHz RF Power Transistor Description

The GTAH17280RC2 is a 280W, both input and output matched GaN HEMT, ideal for multiple applications

from 1.1-1.7GHz, with leading performance. It can support CW, pulse or any modulated signal.

There is no guarantee of performance when this part is used outside of stated frequencies.

• Typical performance across 1.1-1.7GHz class AB application circuit with device soldered at 28V

GTAH17280RC2 VDS=28V VGS=-2.45V IDQ=120mA CW						
Freq(MHz)	Psat(dBm)	Psat(W)	IDS(A)	Pin(dBm)	Gain(dB)	Eff(%)
1100	54.85	305.5	18.33	40.02	14.83	59.52
1200	55.31	339.6	17.58	40.25	15.06	69.00
1300	54.35	272.3	15.18	40.29	14.06	64.06
1400	54.02	252.3	16.50	40.62	13.40	54.62
1500	54.29	268.5	17.54	40.45	13.84	54.68
1600	54.38	274.2	16.32	40.07	14.31	60.00
1700	54.05	254.1	14.13	40.70	13.35	64.22

Applications

- L band power amplifier
- GPS, Beidou jammer
- 1.5GHz LTE amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically –5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

- Turning the device OFF
- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+150	Vdc
GateSource Voltage	V _{GS}	-10 to +2	Vdc
Operating Voltage	V _{DD}	32	Vdc
Maximum gate current	lgs	73.5	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

CharacteristicSymbolValueUnitThermal Resistance, Junction to Case by FEA
T_c= 25°C, at Tj=200°CReJC0.5°C /W

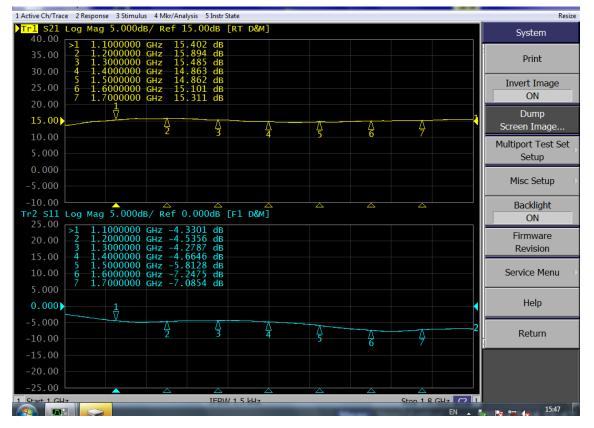


Table 3. Electrical Characteristics (TA = 25°C unless otherwise noted)

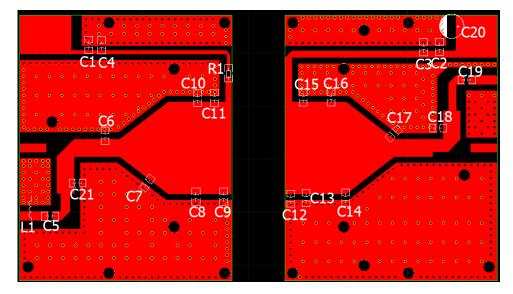
DC Characteristics (measured on wafer prior to packaging)

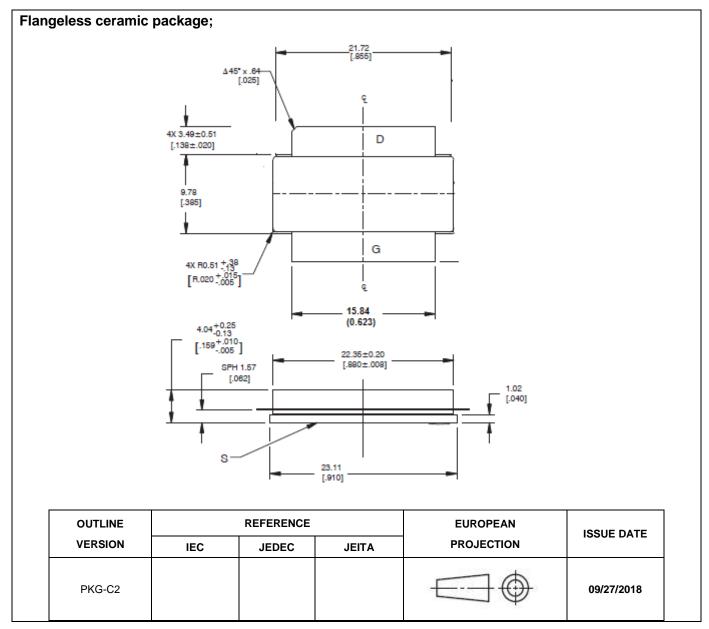
-						
Characteristic	cteristic Conditions		Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=73.5mA	V _{DSS}		150		V
Gate Threshold Voltage	VDS =10V, ID = 73.5mA	V _{GS(th)}	-4		-2	V
ate Quiescent Voltage VDS =50V, IDS=300mA Measured in Functional Te		V _{GS(Q)}		-2.6		V
Ruggedness Characteristics						
Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	1.2 GHz, Pout=280W Pulsed CW					
	All phase,	VSWR		10:1		
	No device damages					

Figure 3: Network analyzer output, S11 and S21 (VDS=28V VGS=-2.6V IDQ=300mA)

Innogration (Suzhou) Co., Ltd.

Figure 4: Picture of application board 1.1-1.7GHz class AB




Table 4. Bill of materials of application board (PCB layout upon request)

Component	Description	Suggested Manufacturer		
C1,C2	10uF/100V-1210	Ceramic multilayer capacitor		
C3	120pF	BJYN MQ301111		
C4	200pF	BJYN MQ301111		
C5	30pf	BJYN MQ301111		
C6,C13	2.4pF	BJYN MQ301111		
C7,C8	3pF	BJYN MQ301111		
C9,C11	3.6pF	BJYN MQ301111		
C10	2pF	BJYN MQ301111		
C12	3.3pF	BJYN MQ301111		
C14,C16	1pF	BJYN MQ301111		
C15	3.9pF	BJYN MQ301111		
C17	2.7pF	BJYN MQ301111		
C18	1.5pF	BJYN MQ301111		
C19	24pF	BJYN.MQ101111		
C20	470uF/63V	Electrolytic Capacitor		
C21	0.8pF	BJYN MQ301111		
R1	18 ^Ω -1206	Chip Resistor		
L1	1mm wire, 3mm innerdiameter, 3turns	DIY		
РСВ	Rogers 4350B			

Innogration (Suzhou) Co., Ltd.

Document Number: GTAH17280RC2 Preliminary Datasheet V1.0

Package Outline

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2025/2/17	V1.0	Preliminary Datasheet Creation

Application data based on: TC-25-08

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.