GaN HEMT 50V, 200W, 5.9-6.1GHz RF Power Transistor

Description

The STCV61200L4 is a dual path 200watt, GaN HEMT, ideal for applications from 5.9 to 6.1GHz. It can be configured as asymmetrical Doherty for 5G application, delivering 25W average power according to normal 8.5dB back off.

It is housed in 15*5.5mm ceramic package with high thermally conductive flange.

There is no guarantee of performance when this part is used outside of stated frequencies.

• Typical RF performance on application board with device soldered

VDS = 48 V, Idq_main = 110 mA, Vgs_peak=-5.3V

Frog	Pu	lse CW Signa	(1)	Pavg	CDMA Signal ⁽²⁾	
Freq (GHz)	P3 (dBm)	P5 (dBm)	P5 (W)	Gp (dB)	η ₀ (%)	ACPR _{5M} (dBc)
5.9	52.20	53.18	207	12.56	38.80	-34.10
6.0	52.40	53.23	210	12.70	40.35	-32.25
6.1	52.60	53.17	207	11.40	39.50	-31.59

(1)Pulsed condition: 20us and 10%, (2)1C WCDMA; Signal PAR = 10 dB @ 0.01% Probability on CCDF.

Applications

- 5G advanced Doherty amplifier
- C band power amplifier application

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

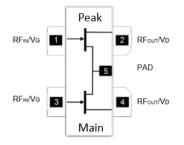

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Figure 1: Pin Connection definition

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Transparent top view (Backside grounding for source)

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V_{GS}	-8 to +0.5	Vdc
Operating Voltage	V _{DD}	55	Vdc
Maximum gate current	lgs	27	mA

Document Number: STCV61200L4 Preliminary Datasheet V1.0

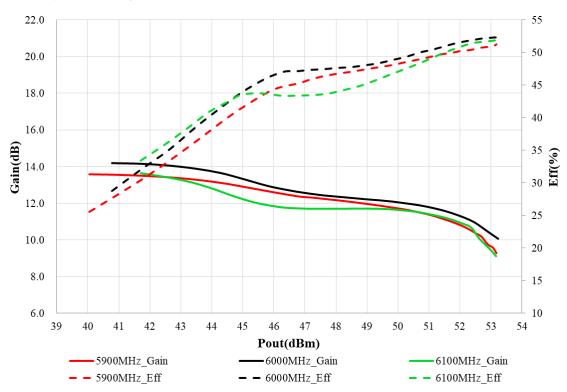
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C
Table 2. Thermal Characteristics			
Characteristic	Symbol	Value	Unit

CharacteristicSymbolValueUnitThermal Resistance, Junction to Case by FEAReJC2.4°C /WTc= 85°C, at Pout=25W WCDMA°C /W°C /W°C /W

Table 3. Electrical Characteristics (TA = 25° C unless otherwise noted)

DC Characteristics (main path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=10mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 10mA	V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage	VDS =50V, IDS=110mA, Measured in Functional Test	V _{GS(Q)}		-3.1		V


DC Characteristics (peak path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=17mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 17mA	V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage	VDS =50V, IDS=130mA Measured in Functional Test	V _{GS(Q)}		-3.13		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	6GHz, Pout=25W WCDMA on					
	Doherty			40.4		
	All phase,	VSWR		10:1		
	No device damages					

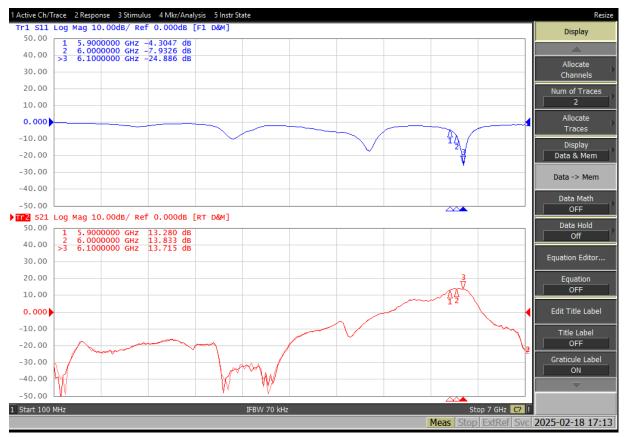


Figure 5: Picture of application board Doherty circuit

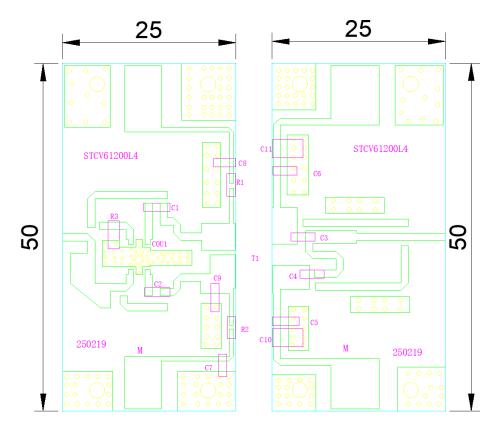
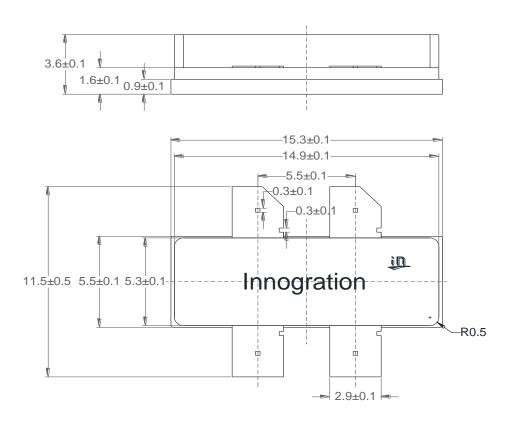



Table 4. Bill of materials of application board (PCB layout upon request, RO4350B 20mils)

	Test Board Bom					
Part	Quantity	Description	Part Number	Manufacture		
C4,C5,C6,C8	4	3.9pFHigh Q	251SHS3R9BSE	TEMEX		
		Capacitor				
C1,C2,C7	3	1.0pFHigh Q	251SHS1R0BSE	TEMEX		
		Capacitor				
C3	1	1.2pFHigh Q	251SHS1R2BSE	TEMEX		
		Capacitor				
С9	1	0.1pFHigh Q	251SHSOR1BSE	TEMEX		
		Capacitor				
C11,C10	2	10uF MLCC	GRM32EC72A106M	Murata		
			E05			
R1,R2	2	10 Ω Power	ESR03EZPF100	ROHM		
		Resistor				
R3	1	51 Ω Power	S1206N	RN2		
		Resistor				
COUT1	1	3 dB Bridge	X3C70F1-03S	Anaren		
T1	1	200W GaN	STCV61200L4	Innogration		
		Dual Transistor				

Earless Flanged Ceramic Package; 4 leads

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2025/2/19	V1.0	Preliminary Datasheet Creation

Application data based on LWH-25-08

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.