
Document Number: XTAH15110A2C Preliminary Datasheet V1.0

GaN HEMT 28V,HF-1.5GHz 110W, RF Power Transistor Description

The XTAH15110A2C is a 110W GaN HEMT, designed for multiple application up to 1.5GHz It can be used in CW, Pulse and any other modulation modes. There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

V40-20V, 144-10011/V, OVV							
Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
650	48.96	78.6	47.6	17.98	50.57	114.1	57.4
700	50.2	104.6	56.1	18.29	51.81	151.9	66.9
750	49.26	84.3	53.3	18.17	51.32	135.5	66.4
800	48.91	77.9	54.9	18.12	51.15	130.3	69.1
860	48.74	74.9	57.8	18.33	50.9	123.1	72.1

Applications

- L band power amplifier
- P band power amplifier
- ISM/RF Energy power amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+150	Vdc
GateSource Voltage	V_{GS}	-8 to +0.5	Vdc
Operating Voltage	V_{DD}	36	Vdc
Maximum gate current	Igs	31.5	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _C	+150	°C
Operating Junction Temperature	TJ	+225	°C

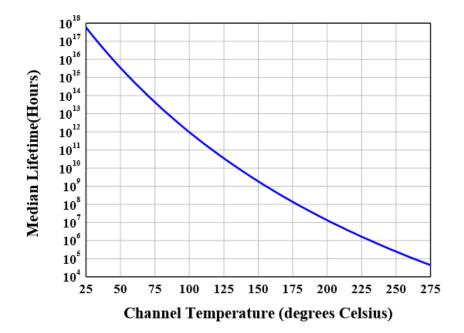
Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Polo	1.7	°C /W
T _C = 85°C, at Pdiss=65W	ReJC	1.7	-0/00

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics (measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=31.5mA	V_{DSS}		150		V
Gate Threshold Voltage VDS =10V, ID = 31.5mA		$V_{GS(th)}$	-4		-2	V


Document Number: XTAH15110A2C Preliminary Datasheet V1.0

Gate Quiescent Voltage	VDS =28V, IDS=100mA, Measured in Functional Test	$V_{GS(Q)}$		-3.15		V
------------------------	---	-------------	--	-------	--	---

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	1.5GHz, Pout=110W Pulsed CW					
	All phase,	VSWR		10:1		
	No device damages					

Figure 2: Median Lifetime vs. Channel Temperature

650-860MHz(1 device)

Typical performance

Figure 4: Network analyzer output S11/S21

Figure 5: Picture of application board

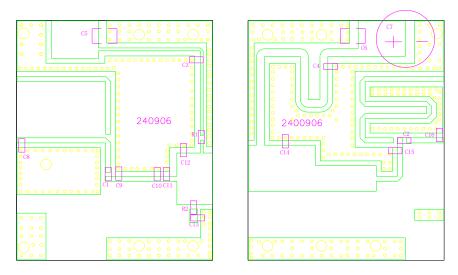
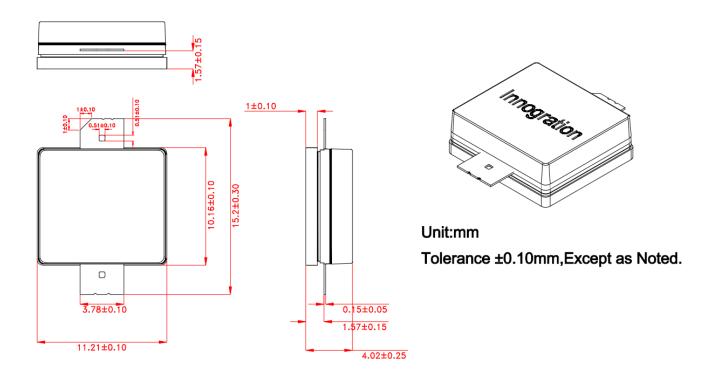


Table 4. Bill of materials of application board (PCB layout upon request)

Designator	Comment Footprint		Quantity
C1	20 pF	0805 1	
C2, C3, C4	82 pF	0805	3
C5, C6	10 uF/100V	1210	2
C7	1000 uF/63V		1
R1, R2	10 Ω	0603	2
C8, C9, C15	3.9 pF	0603/0805	3



Document Number: XTAH15110A2C Preliminary Datasheet V1.0

Designator	Comment	Footprint	Quantity
C10	6.8 pF		1
C11, C12, C14	10 pF	0805	3
C13	10uF/16V	0603	1
C16	1.2 pF	0805	1
PCB	20mils RO4350B		

Document Number: XTAH15110A2C Preliminary Datasheet V1.0

Package Dimensions (Unit:mm)

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2025/4/17	V1.0	Preliminary Datasheet Creation

Application data based on: LSM-25-05

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.